
Architecture
5.X

With the introduction of 5.x in 2012, eZ Publish made an important leap forwards in terms of technology, introducing a new architecture side by
side with the 4.x based "Legacy", allowing user to gradually migrate towards what by 2015 was set to become the 6th generation eZ CMS: eZ

.Platform

Why this change in technology
What are the changes?
What will be gained?

Symfony2
Twig
New storage systems
Rest API
PHP API
Compatibility with the legacy architecture

Understanding the architecture in more detail
The target architecture: "eZ Platform"
The "real" version 5.x architecture: "Legacy" and "Platform" together

Summary on the ways to use eZ Publish 5
Using eZ Publish 5 in full legacy mode
Using ez publish 5.0 through the legacy stack but relying on the new controller and new template system as well as the new
kernel.
Using the brand new "Platform"architecture only

In summary eZ Publish 5.0 introduces a new technology stack referred to as "Platform" (earlier sometimes referred to as "new stack", "6.x stack"
or "Symfony stack") next to the existing eZ Publish 4.x technology, herby referred to as Legacy. Platform Stack will throughout the 5.x series
mature for each release until it becomes ready to be next evolution of eZ Publish. This approach allows for very high degree of forward and
backwards compatibility.

This document will explain why , and to some degree explain what this mewe are renewing our technology platform evolution in architecture
ans to eZ Publish developers and users, and last but not least by these changes.how eZ Systems is affected

Why this change in technology

The background for the changes is to meet the challenges ahead:

Customer and User Experience Management requirements: beyond simple web content management, enable the building of any digital
user experience
Performance and scalability: deliver on the ever increasing need for performance and scalability
The big data situation: embrace big data situation as an opportunity to build new digital services and not view it as a hurdle
Fulfill the multichannel vision: enable content to live in any screen, any app, any device

The overall goal is , ie, we would like our partners to be able to offer the customers exactly what they want,to reach Digital Service Excellence
within acceptable timeframes and price tags on the eZ Publish Platform.

What are the changes?

eZ Systems is now introducing the following as the new "Platform":

. This will speed up developments on the platform and improve their quality and maintainabilityAn extended and sustainable Public API
both for eZ core developers and extension developers, which in turn will lead to more efficient implementation projects

 with read and write functionality and support all the core content management functionality. This way, eZAn improved REST API
Publish will better integrate with any programming framework, for instance into mobile applications or any other web application. Better
meaning faster and simpler. in order to fulfill the multichannel vision and execute on the User Experience demands and needs of
customers and users of the eZ Publish platform
Introducing as the Web Framework (PHP) under the platform to make developers lives easier and to make developments onSymfony
eZ Publish accessible for more developers to further support innovation in eZ Publish
Introducing to simplify working with templates in eZ Publish. And as a standard template engine this willTwig as the template engine
also make eZ Publish templating accessible to more developers
Introducing for scalability, performance and maintainability reasons a new storage system

And as a result of all these changes, a major last item is

 Introducing between the new architecture resulting from the above and the architecture asa backward compatibility "Platform" "legacy"
known in eZ Publish 4.x

https://doc.ez.no/display/TECHDOC/Architecture
https://doc.ez.no/display/TECHDOC/Architecture

What will be gained?

Symfony2

With as the web framework eZ Publish will be more accessible. Thanks to the framework, it will be used for instance to extend eZSymfony
Publish applications with new features, potentially not based at all on the content repository (for example, business specific application logic)
using a standard PHP framework and a very clean application design with minimum interlocking with eZ Publish itself.

Any developer knowing Symfony will then be able to easily develop eZ Publish Bundles the equivalent of eZ Publish legacy extensions.

This will cater for :

 a better quality of the code
 a lower entry point to do developments in eZ Publish
 more innovation faster since more developers will use a standard PHP framework
 Symfony has an open-source community that will help developers
 Symfony is commercially backed up, so they are in it for the long run and Sensio Lab (maker of Symfony) will naturally extend the eZ
offering to the framework level if need be.

Twig

Initially, eZ Systems has developed its own templating engine. eZ has also worked and redeveloped a second one at some point as part of the eZ
Component project. When designing eZ Publish 5, we knew the old template engine was not good enough anymore and needed to be replaced.
We knew the eZ Components template engine we contributed and originated was an option, but we decided to go for another one: . ReasonsTwig
are multiple: quality of course (even if the eZ components one was also very high quality), integration and cohesion to use it with the Symfony
stack and finally again the strength and size of the community using it today. Symfony has developed Twig as a standard template engine, and eZ
Systems is using it to further the following:

to update the legacy template engine
to simplify template coding in eZ Publish
to have faster page rendering
to benefit of more features which were not in the original engine
to make extension developments easier to speed up innovation in eZ Publish

This is a move that will influence every stakeholder in the eZ Publish development. As developers will implement faster, this also mean project will
significantly improve in total cost of ownership as well as in .time to market

New storage systems

In order to meet performance and scalability requirements in the future, eZ introduces new storage systems with the version 5 serie.

In 5.0, this storage system lives beside the legacy storage system and data model, but will use the new API to access the data.

Also in 5.0 version, this new storage engine only support MySQL relational database, nevertheless it is designed to allow the development of
drivers for other storage engines through the Persistence SPI (service provider interface) and in the future will include drivers for NoSQL and
Document based storage engine.

The ultimate goal is to open for custom storage developments.

Rest API

In order to meet all multi-channel requirements we are developing a that cover all core feature of content management so we canRest API
integrate with any application on any channel in any programming language.
The gain for users will be for anyone integrating eZ Publish with other applications, not only the development will be significantly improved but
more importantly, the value of an API also lies in the it offers. the new rest api is designed to stay and willmaintainability and sustainability
remain identical in all future 5.x version. this means that development done on top of the api will seamlessly support eZ Publish version upgrades.

PHP API

The PHP API, also called , is the development glue and will a create shield between internal and external developments on eZ Publish.Public API
This will cater for an easier maintainability of code and speed up the performance of eZ Publish. PHP developers will experience a better
extensibility which in turn will enable them to create extensions to eZ Publish faster and easier.

The is key to development speed, shorter projects and better quality. Important to be noted: the php api is the foundation for the restPublic API
api and the second is naturally relying on the first.

http://symfony.com/
https://doc.ez.no/display/EZP/Extensions
http://twig.sensiolabs.org/
https://doc.ez.no/display/EZP/eZ+Publish+REST+API
https://doc.ez.no/display/EZP/Public+API+basics
https://doc.ez.no/display/EZP/Public+API+basics

Compatibility with the legacy architecture

When we introduce changes of this magnitude, eZ Systems as an international software house must also consider the reality of the installed
customer base. Every installation must be able to take care of the old and create on the new architecture.
The reason for change is of course to be able to meet new requirements and the need to enable progressive changes.

Understanding the architecture in more detail

The target architecture: "eZ Platform"

The first important thing to understand about the new architecture is to explain it standalone, without considering the old legacy architecture.

The following diagram shows a simplistic view of this new architecture, and a more detailed view for developers.

Simplified view Detailed view

The new architecture is layered and uses clearly defined API’s between the layers.

The is defined in a new kernel. This business logic is exposed to applications via an API (the). Developersbusiness logic Public API
rely on this to develop websites and web applications using Symfony to organize the way they develop the user interface layer.
User interfaces are developed using the Twig template engine but directly querying the .Public API
Integration of eZ Publish in other applications are done using the , which itself relies also on the .Rest API Public API
finally development of extensions of eZ Publish is done using the Symfony framework when it comes to the structure of the code, and
once again relying on the Public API when it comes to accessing content management functions

To a lower level, the new architecture also totally redefined the way the system store data. while this is not finalized in version 5.0 (where the new
storage system is only shipped with MySQL support), the architecture, when finalized will rely on a storage API that will be used to develop drivers
to any kind of storage subsystem.

A motto for this new architecture is to that will be maintained on the long term to heavily use APIs ease upgrades and provide lossless
 between each part of the architecture, improving the migration capabilities of the system at the same time.couplings

https://doc.ez.no/display/EZP/Public+API+basics
https://doc.ez.no/display/EZP/Public+API+basics
https://doc.ez.no/display/EZP/eZ+Publish+REST+API
https://doc.ez.no/display/EZP/Public+API+basics

1.

2.

The "real" version 5.x architecture: "Legacy" and "Platform" together

The chapter above is only explaining the new architecture but, as mentioned, version 5 also offers a way to run the eZ Publish stack, inlegacy
order to simplify upgrade and switch to version 5. This result in the end in a more sophisticated architecture that is illustrated in the diagram
below.

The main difference is, between the new architecture explained in the previous chapter (on the right) and the previousthe cohabitation
architecture (on the left).

If we look at the old architecture, we can see that it is more monolithic: no defined public PHP API, a business logic implemented in the kernel but
very dependent of the storage system and the underlying data model, an existing rest api but limited to read access to the content repository.

This whole legacy architecture is in its whole included with version 5, and can be used as is.

This means that, for people having developed 4.x websites and that are reluctant to invest time in migrating or even learning the new architecture
components, they can use version 5 exactly as they were using version 4. Even the controller (access to the application through the web server)
can totally bypass the new architecture (in that case the Symfony framework controller) and directly call the legacy eZ Publish controller and the
legacy template engine.

On its side, the new architecture has been implemented, and eZ will implement new features and applications on top of it subsequently. So, as
part of 5.0, the new architecture is in place, but does not provide yet the full application scope.

What is more interesting to understand is how these two integrate:

First on the presentation side, the new eZ Publish 5 controller makes it possible to serve pages and functions that are either
. This is a first level of dual compatibility that will helpresulting from the new template engine or the legacy template engine

developers in a smooth transition from one architecture to the other, starting with legacy templates and progressively replacing them with
templates for the new system, Twig.

Second, on the api side, the has been designed to work against the business logic and Public API to be used either on top of the

. This means that, by implementing the new architecture and embracing the PHPlegacy storage or on top of the new storage system
Public API, developers enable An extension developed on top of the an easy transition from the old data model to the new one. Publ

 will equally work on an old content repository or on a brand new one based on the new architecture.ic API

These two ways to implement a compatibility between the past architecture and the new one offers a wide range of possibilities and a smooth

https://doc.ez.no/display/EZP/Public+API+basics
https://doc.ez.no/display/EZP/Public+API+basics
https://doc.ez.no/display/EZP/Public+API+basics

transition path.

Summary on the ways to use eZ Publish 5

Using eZ Publish 5 in full legacy mode

This way is the less disruptive. In this way, eZ Publish 5.0 totally behave as if it was an eZ Publish 4.7, or we should say 4.8. This is ideal for
users who have large existing applications with large amount of data and who are not willing to invest in learning and migrating them immediately.

In this way, even the siteaccess and vhost configuration bypass the legacy stack, and developers will see almost no differences.

Using ez publish 5.0 through the legacy stack but relying on the new controller and new template
system as well as the new kernel.

This way offers a transition and allows to combine old template and new templates in the same application. In this case, the users will rely on the
administration interface of eZ Publish as well as on the ez tool bar for front-end editing, through the legacy templates, but the front end will be
either based on legacy or new twig based templates.

In this model, the two kernels can be used and the system can this way benefit from the Public API and the new REST API built on top.

Using the brand new "Platform"architecture only

This case is the one that will deliver very strong improvements in scalability and performance, in this case the whole new architecture is used and
there is no way to reuse components from the legacy architecture.

This means that:

the administration interface is not available in 5.0
existing templates and site won't run without having been migrated
the old storage system is not used any more

 Note: because of these restrictions, a new storage engine has not been made yet. Similar setup can use the "Legacy storage engine" for the time
being to be ready to migrate data and not have to change code when a new engine is added in the future.

While this might sound restricting for the time being, it is clearly the foundation of the future of eZ Publish.

In the context of eZ Publish 5, it can be useful for new projects relying only on the concept of "content as a service" the platform is a high
performance and scalability content repository with very advanced services but provide no editorial user interface. for traditional content
management.

Video : Overview of the eZ Publish 5 architecture
 Learn more with this video :

	Architecture

