
Persistence cache
Introduction
Persistent cache

Layers
Transparent cache

Entity stored only once
What is cached?

Introduction

This page describes how Persistence cache works, and how to reuse the cache service it uses.

Configuration

For configuring the cache service, look at the page, for re-using the internal cache service see Persistence cache configuration Using Cache
.service

Persistent cache

Layers

Persistence cache can best be described as an implementation of SPI\Pe
 that decorates the main backend implementation rsistence (currently:

."Legacy Storage Engine")

As shown in the illustration, this is done in the exact same way as the
SignalSlot feature is a custom implementation of API\Repository
decorating the main Repository. In the case of Persistence Cache, instead
of sending events on calls passed on to the decorated implementation,
most of the load calls are cached, and calls that perform changes purge the
affected caches. This is done using a Cache service which is provided by
StashBundle; this Service wraps around the Stash library to provide
Symfony logging / debugging functionality, and allows cache handlers (Me

 to be configured using Symfonymcached, Redis, Filesystem, etc.)
configuration. For how to reuse this Cache service in your own custom
code, see below.

Transparent cache

With the persistence cache, just like with the HTTP cache, eZ Platform tries
to follow principles of "Transparent caching", this can shortly be described
as a cache which is invisible to the end user and to the admin/editors of eZ
Platform where content is always returned "fresh". In other words, there
should be no need to manually clear the cache like it was frequently the
case with eZ Publish 4.x. This is possible thanks to an interface that follows
CRUD operations per domain, and the fact(Create Read Update Delete)
that the number of other operations capable of affecting a certain domain is
kept to a minimum.

Entity stored only once

To make the transparent caching principle as effective as possible, entities
are, as much as possible, only stored once in cache by their primary id.
Lookup by alternative identifiers (, , etc.) is onlyidentifier remoteId

compositionscached with the identifier as cache key and primary as its cache value, and id usually keep only the array of primary (list of objects)
id's as their cache value.

This means a couple of things:

Memory consumption is kept low

https://doc.ez.no/display/TECHDOC/Persistence+cache+configuration
https://doc.ez.no/display/TECHDOC/Using+Cache+service
https://doc.ez.no/display/TECHDOC/Using+Cache+service

Cache purging logic is kept simple (For example: clears "section/3" cache entry)$sectionService->delete(3)
Lookup by and list of objects needs several cache lookups to be able to assemble the result valueidentifier
Cache warmup usually takes several page loads to reach full as identifier is first cached, then the object

What is cached?

Persistence cache aims at caching most calls used in common page loads, including everything needed for permissionSPI\Persistence
checking and url alias lookups.

Notes:

UrlWildCardHandler is not currently cached
Currently in case of transactions this is handled very simply by clearing all cache on rollback, this can be improved in the future if needed.
Some tree/batch operations will cause clearing all persistence cache, this will be improved in the future when we change to a cache
service cable of cache tagging.
Search is not defined as Persistence and the queries themselves are not planned to be cached. Use which does this for you toSolr
improve scale and offload your database.

For further details on which calls are cached or not, and where/how to contribute additional caches, check out the .source

https://doc.ez.no/display/TECHDOC/Solr+Bundle
https://github.com/ezsystems/ezpublish-kernel/tree/master/eZ/Publish/Core/Persistence/Cache

	Persistence cache

