
Content view
The ViewController
View selection
Location view template

Available variables
Template inheritance
Rendering content's fields

Getting raw Field value
Using the FieldType's template block

Rendering Content name
Name property in ContentInfo
Translated name

Exposing additional variables
Making links to other locations
Render embedded content objects

Using ez_content controller
Available arguments

Render block
ESI
 Asynchronous rendering

Display a default text

The ViewController

eZ Publish comes with a native controller to display your content, known as the . It is called each time you try to reach aViewController
content item from its (URI generated for any content based on URL patterns defined per Content Type)Url Alias human readable, translatable
and is able to render any content previously edited in the admin interface or via the .eZ Publish Public API

It can also be called directly by its direct URI : /content/location/<locationId>

A content item can also have different (full page, abstract in a list, block in a landing page...). By default the view type is (for fullview types full
page), but it can be anything (, ...).line block

View selection

To display a content item, the ViewController uses a view manager which selects the appropriate template depending on matching rules.

Location view template

A content view template is like any other template, with several specific aspects.

Available variables

Variable name Type Description

Important note regarding visibility
Location visibility flag, which you can change with hide/unhide in admin, is not permission based and thus acts as a simple potential
filter. .It is not meant to restrict access to content

If you need to restrict access to a given content, use , which are permission based.Sections or Object states

For more information about the , please .view provider configuration refer to the dedicated page

You can also .use your own custom controller to render a content item/location

https://doc.ez.no/display/EZP/eZ+Publish+Public+API
https://doc.ez.no/display/EZP/View+provider+configuration
https://doc.ez.no/display/EZP/How+to+use+a+custom+controller+to+display+a+content+item+or+location

location eZ\Publish\Core\Repository\Values\Content\Location The location object. Contains meta information on the content (Co
)ntentInfo

(only when accessing a location)

content eZ\Publish\Core\Repository\Values\Content\Content The content object, containing all fields and version information (V
)ersionInfo

noLayout Boolean If true, indicates if the content/location is to be displayed without
any pagelayout (i.e. AJAX, sub-requests...).
It's generally when displaying a content item in view type false f

. ull

viewBaseLayout String The base layout template to use when the view is requested to be
generated outside of the pagelayout (when is true).noLayout

Template inheritance

Like any template, a content view template can use . However keep in mind that your content can be also requested via template inheritance sub-r
 (see below how to render embedded content objects). In this case your template should probably not extend your main layout.equests

In this regard, it is recommended to use inheritance this way:

{% extends noLayout ? viewbaseLayout : "AcmeDemoBundle::pagelayout.html.twig" %}

{% block content %}
...
{% endblock %}

Rendering content's fields

As stated above, a view template receives the requested Content object, holding all fields.

In order to display the fields' value the way you want, you can either manipulate the Field Value object itself or use a template.

Getting raw Field value

Having access to the Content object in the template, you can use to access to all the information you need. You can also use its public methods e
 helper to get the Field value in the current language if translation is available.z_field_value

{# With the following, myFieldValue will be in the content's main language, regardless
the current language #}
{% set myFieldValue = content.getFieldValue('some_field_identifier') %}

{# Here myTranslatedFieldValue will be in the current language if a translation is
available. If not, the content's main language will be used #}
{% set myTranslatedFieldValue = ez_field_value(content, 'some_field_identifier') %}

Using the FieldType's template block

All built-in FieldTypes come with you can take advantage of by calling helper.a piece of Twig template code ez_render_field()

{{ ez_render_field(content, 'some_field_identifier') }}

Refer to for further information. reference pageez_render_field()

https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/Repository/Values/Content/Location.php
https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/Repository/Values/Content/Content.php
https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/Repository/Values/Content/ContentInfo.php
https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/Repository/Values/Content/ContentInfo.php
https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/Repository/Values/Content/Content.php
https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/Repository/Values/Content/VersionInfo.php
https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/Repository/Values/Content/VersionInfo.php
http://symfony.com/doc/current/book/templating.html#template-inheritance-and-layouts
http://symfony.com/doc/current/book/templating.html#embedding-controllers
http://symfony.com/doc/current/book/templating.html#embedding-controllers
https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Publish/Core/Repository/Values/Content/Content.php
https://doc.ez.no/display/EZP/ez_field_value
https://doc.ez.no/display/EZP/ez_field_value
https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Bundle/EzPublishCoreBundle/Resources/views/content_fields.html.twig
https://doc.ez.no/display/EZP/ez_render_field

Rendering Content name

The of a content item is its generic "title", generated by the repository considering several rules in the FieldDefinition. It usually consists inname
the normalized value of the first field.

There are 2 different ways to access to this special property:

Through the name property of ContentInfo (not translated).
Through VersionInfo with the TranslationHelper (translated).

Name property in ContentInfo

This property is the actual content name, but (so it is not translated).in main language only

<h2>Content name: {{ content.contentInfo.name }}</h2>

$contentName = $content->contentInfo->name;

Translated name

The is held in object, in the names property which consists of hash indexed bytranslated name VersionInfo

locale. You can easily retrieve it in the right language via the service.TranslationHelper

<h2>Translated content name: {{ ez_content_name(content) }}</h2>
<h3>Also works from ContentInfo : {{ ez_content_name(content.contentInfo) }}</h3>

You can refer to for further information.ez_content_name() reference page

// Assuming we're in a controller action
$translationHelper = $this->get('ezpublish.translation_helper');

// From Content
$translatedContentName = $translationHelper->getTranslatedContentName($content);
// From ContentInfo
$translatedContentName = $translationHelper->getTranslatedContentNameByContentInfo(
$contentInfo);

You can also in a 2nd argument:force a locale

As this makes use of reusable templates, using is the recommended way and is to be considered as a bestez_render_field()
.practice

The TranslationHelper service is available as of version 5.2 / 2013.09

The helper will respect the prioritized languages.

If there is no translation for your prioritized languages, the helper will always return the name in the main language.

https://doc.ez.no/display/EZP/ez_content_name

{# Force fre-FR locale. #}
<h2>{{ ez_content_name(content, 'fre-FR') }}</h2>

// Assuming we're in a controller action
$translatedContentName = $this->get('ezpublish.translation_helper'
)->getTranslatedName($content, 'fre-FR');

Exposing additional variables

It is possible to expose additional variables in a content view template. See or parameters injection in content views use your own custom
.controller to render a content item/location

Making links to other locations

Linking to other locations is fairly easy and is done with (or if you want to generate absolute URLs). You justnative Twig helperpath() url()
have to pass it the Location object and will generate the URLAlias for you.path()

{# Assuming "location" variable is a valid
eZ\Publish\API\Repository\Values\Content\Location object #}
Some link to a location

If you don't have the Location object, but only its ID, you can generate the URLAlias the following way:

Some link to a location,
with its Id only

As of / , you can also use the Content ID. In that case generated link will point to the content main location.5.4 2014.11

Some link from a
contentId

See also : Cross SiteAccess links

Render embedded content objects

Rendering an embedded content from a Twig template is pretty straight forward as you just need to do a subrequest with controllez_content
.er

Using controllerez_content

This controller is exactly the same as and has 2 main actions:the ViewController presented above

Under the hood
In the backend, uses the Router to generate links.path()

This makes also easy to generate links from PHP, via the service.router

https://doc.ez.no/display/EZP/Parameters+injection+in+content+views
https://doc.ez.no/display/EZP/How+to+use+a+custom+controller+to+display+a+content+item+or+location
https://doc.ez.no/display/EZP/How+to+use+a+custom+controller+to+display+a+content+item+or+location
http://symfony.com/doc/2.3/book/templating.html#linking-to-pages
https://doc.ez.no/display/EZP/Cross+SiteAccess+links

viewLocation to render a location (same as when accessing a content item through an URLAlias)
viewContent to render a content item

You can use this controller from templates with the following syntax:

{{ render(controller("ez_content:viewLocation", {"locationId": 123, "viewType":
"line"})) }}

The example above allows you to render a Location which ID is 123, with the view type line.

Available arguments

As any controller, you can pass arguments to or to fit your needs.ez_content:viewLocation ez_content:viewContent

Name Description Type Default value

locationId Id of the location you want to render.
 Only for ez_content:viewLocation

integer N/A

contentId Id of the content you want to render.
 Only for ez_content:viewContent

integer N/A

viewType The view type you want to render your content/location in.
Will be used by the ViewManager to select corresponding template, according to defined rules.

Example: full, line, my_custom_view, ...

string full

layout Indicates if the sub-view needs to use the main layout (see)available variables in a view template

boolean false

params Hash of variables you want to inject to sub-template, key being the exposed variable name.

{{ render(
 controller(
 "ez_content:viewLocation",
 {
 "locationId": 123,
 "viewType": "line",
 "params": { "some_variable": "some_value" }
 }
)
) }}

hash empty hash

Render block

>= EZP 5.4 / >= 2014.11

You can specify which controller will be called for a specific block view match, much like defining custom controllers for location view or content

eZ Publish 5.1+ / Symfony 2.2+

Reference of controller follow the syntax of , .ez_content controllers as a service as explained in Symfony documentation

Available as of eZ Publish 5.1

http://symfony.com/doc/current/cookbook/controller/service.html

view match.

Also, since there are two possible actions with which one can view a block: and , it is possibleez_page:viewBlock ez_page:viewBlockById
to specify a controller action with a signature matching either one of original actions.

Example of configuration in :ezpublish/config/ezpublish.yml

ezpublish:
 system:
 eng_frontend_group:
 block_view:
 ContentGrid:
 template: NetgenSiteBundle:block:content_grid.html.twig
 controller: NetgenSiteBundle:Block:viewContentGridBlock
 match:
 Type: ContentGrid

ESI
Just as for regular Symfony controllers, you can take advantage of ESI and use different cache levels:

{{ render_esi(controller("ez_content:viewLocation", {"locationId": 123, "viewType":
"line"})) }}

 Asynchronous rendering
Symfony also supports asynchronous content rendering with the help of library.hinclude.js

{{ render_hinclude(controller("ez_content:viewLocation", {"locationId": 123,
"viewType": "line"})) }}

Display a default text

If you want to display a default text while a controller is loaded asynchronously, you have to pass a second parameters to your render_hinclude
twig function.

Using ESI (eZ Publish 5.1+ / Symfony 2.2+)

Only scalable variables can be sent via render_esi (not object)

Asynchronous rendering (eZ Publish 5.1+ / Symfony 2.2+)

Only scalable variables can be sent via render_hinclude (not object)

http://mnot.github.com/hinclude/

{{ render_hinclude(controller('EzCorporateDesignBundle:Header:userLinks'), {
'default': "<div style='color:red'>loading</div>" }) }}

See also : How to use a custom controller to display a content item or location

Display a default text while asynchronous loading of a controller

hinclude.js needs to be properly included in your layout to work.

Please for all available options.refer to Symfony documentation

https://doc.ez.no/display/EZP/How+to+use+a+custom+controller+to+display+a+content+item+or+location
http://mnot.github.com/hinclude/
http://symfony.com/doc/current/book/templating.html#asynchronous-content-with-hinclude-js

	Content view

