
Legacy code and features
eZ Publish 5 has a strong focus on backwards compatibility and thus lets you reuse code you might have written for 4.x, including templates and
modules.

Legacy Mode
What it does
What it doesn't do
Allowing Symfony routes to work

Legacy Template inclusion
Template parameters

Running legacy code
Legacy modules

Routing fallback & sub-requests
Using eZ Publish 5 and Symfony features in Legacy
Running legacy scripts and cronjobs

Script help
Legacy bundles

Creating a legacy bundle extension
Alternative: referencing an existing legacy extension via composer
Running the legacy bundle install script manually

Legacy Mode

Legacy mode is a specific configuration mode where eZ Publish's behavior is the closest to v4.x. It might be used in some very specific use
cases, such as .running the admin interface

What it does

Still runs through the whole Symfony kernel. As such, Symfony services can still be accessed from legacy stack.
Disables the default router (standard Symfony routes won't work in this mode)
Disables the UrlAliasRouter. As such, the .ViewController will be bypassed

What it doesn't do

Increase performance. Legacy mode is actually since it won't use the HttpCache mechanism.painful for performances

Hint
Read to have an overview of common concepts and terminology changes, it also have a subIntro for eZ Publish 4.x/3.x developers
page comparing 4.x with 5.x.

Looking for 4.x documentation ?
You will find the 4.x documentation in the .legacy part of the documentation

In a migration context, using Legacy Mode is never a good option as it prevents all the performance goodness (e.g. Http Cache) to
 work.

Always keep in mind that, not running in legacy mode, if a content item still doesn't have a corresponding Twig
template/controller, eZ Publish will always fallback to the legacy kernel, looking for a legacy template .

If you don't have anything migrated to Symfony stack, including Twig templates and Symfony(e.g. pagelayout, config...)
controllers, it's usually better performance wise to use , using folder as yourpure legacy stack ezpublish_legacy/

.DocumentRoot

This way you will only use the legacy kernel and eZ Publish will have the same behavior as 4.x. However, note that you
.won't be able to use the Symfony stack features at all

https://doc.ez.no/pages/viewpage.action?pageId=2720567
https://doc.ez.no/eZ-Publish/
https://doc.ez.no/display/EZP/Legacy+template+fallback

Allowing Symfony routes to work

Symfony routes are disabled in legacy mode, which implies admin interface as well.

If for some reason you need a Symfony route to work, you add it to a whitelist :

ez_publish_legacy:
 # Routes that are allowed when legacy_mode is true.
 # Must be routes identifiers (e.g. "my_route_name").
 # Can be a prefix, so that all routes beginning with given prefix will be taken
into account.
 legacy_aware_routes: ["my_route_name", "my_route_prefix_"]

By default, and all REST v2 (prefix) routes are allowed._ezpublishLegacyTreeMenu ezpublish_rest_

Legacy Template inclusion

It is possible to include old templates () into new ones..tpl

{# Twig template #}
{# Following code will include my/old_template.tpl, exposing $someVar variable in it
#}
{% include "design:my/old_template.tpl" with {"someVar": "someValue"} %}

Or if you want to , relative to folder:include a legacy template by its path ezpublish_legacy

Deprecation warning
Configuration for legacy aware routes have changed as of 5.4.2. Prior to this version, configuration was the following:

ezpublish:
 router:
 default_router:
 # Routes that are allowed when legacy_mode is true.
 # Must be routes identifiers (e.g. "my_route_name").
 # Can be a prefix, so that all routes beginning with given prefix
will be taken into account.
 legacy_aware_routes: ["my_route_name", "my_route_prefix_"]

Note that this notation doesn't work as of eZ Platform (kernel v6.0)

Include a legacy template using the old template override mechanism

{# Following code will include
ezpublish_legacyextension/my_legacy_extension/design/standard/templates/my_old_templat
e.tpl, exposing $someVar variable in it #}
{% include
"file:extension/my_legacy_extension/design/standard/templates/my_old_template.tpl"
with {"someVar": "someValue"} %}

Template parameters

Scalar and array parameters are passed to a legacy template .as-is

Objects, however, are being converted in order to comply the legacy . By default is used, exposing all publiceZ Template API a generic adapter
properties and getters. You can define your own converter by implementing and declare it as a service with the the appropriate interface ezpubl

tag. ish_legacy.templating.converter

Running legacy code

eZ Publish 5 still relies on the legacy kernel (from 4.x) and runs it when needed , making it . This isinside an isolated PHP closure sandboxed
available for your use as well through the method.runCallback()

<?php
// Declare use statements for the classes you may need
use eZINI;

// Inside a controller extending eZ\Bundle\EzPublishCoreBundle\Controller
$settingName = 'MySetting';
$test = array('oneValue', 'anotherValue');
$myLegacySetting = $this->getLegacyKernel()->runCallback(
 function () use ($settingName, $test)
 {
 // Here you can reuse $settingName and $test variables inside the legacy
context
 $ini = eZINI::instance('someconfig.ini');
 return $ini->variable('SomeSection', $settingName);
 }
);

The example above is very simple and naive - in fact for accessing configuration settings from the Legacy Stack using the isConfigResolver
recommended.

Using the legacy closure, you'll be able to even run complex legacy features, like an :eZ Find search

eZ Publish 5.1+

Content / objects from the Public API (re-fLocation are converted into / objectseZContentObject eZContentObjectTreeNode
etched).

All calls from Platform/Symfony stack to legacy stack should be run inside a () call.runCallback

Simple legacy code example

https://github.com/ezsystems/ezpublish-kernel/blob/v2014.11.8/eZ/Publish/Core/MVC/Legacy/Templating/LegacyCompatible.php
https://github.com/ezsystems/ezpublish-kernel/blob/v2014.11.8/eZ/Publish/Core/MVC/Legacy/Templating/LegacyAdapter.php
https://github.com/ezsystems/ezpublish-kernel/blob/v2014.11.8/eZ/Publish/Core/MVC/Legacy/Templating/Converter/ObjectConverter.php
https://doc.ez.no/display/EZP/Legacy+configuration
https://github.com/ezsystems/ezpublish-kernel/blob/v2014.11.8/eZ/Publish/Core/MVC/Legacy/Templating/Converter/ApiContentConverter.php

use eZFunctionHandler;

$searchPhrase = 'My search phrase';
$sort = array(
 'score' => 'desc',
 'published' => 'desc'
);
$contentTypeIdenfiers = array('folder', 'article');
$mySearchResults = $this->getLegacyKernel()->runCallback(
 function () use ($searchPhrase, $sort, $contentTypeIdenfiers)
 {
 // eZFunctionHandler::execute is the equivalent for a legacy template fetch
function
 // The following is the same than fetch('ezfind', 'search', hash(...))
 return eZFunctionHandler::execute(
 'ezfind',
 'search',
 array(
 'query' => $searchPhrase,
 'sort_by' => $sort,
 'class_id' => $contentTypeIdenfiers
)
);
 }
);

Legacy modules

Routing fallback & sub-requests

Any route that is not declared in eZ Publish 5 in an included and that is not a valid routing.yml UrlAlias will automatically fallback to eZ
 (including admin interface).Publish legacy

This allows all your old modules to work as before, out-of-the-box (including kernel modules), and also allows you to reuse this code from
your templates using sub requests:

{{ render(url('ez_legacy', {'module_uri': '/content/view/sitemap/2'})) }}

Using eZ Publish 5 and Symfony features in Legacy

If for some reason you need to develop a legacy module and access to eZ Publish 5 / Symfony features (i.e. when developing an extension for
admin interface), you'll be happy to know that you actually have access to all services registered in the whole framework, including bundles,
through the service container.

Using eZ Find

Template legacy module sub-request

If your module uses ezjscore to insert CSS or JS, you need to add calls to and/or to theez_legacy_render_js ez_legacy_render_css
twig template rendering the <head> of your page.

https://doc.ez.no/display/EZP/ez_legacy_render_js
https://doc.ez.no/display/EZP/ez_legacy_render_css

The example below shows how to retrieve the content repository and the logger.

// From a legacy module or any PHP code running in legacy context.
$container = ezpKernel::instance()->getServiceContainer();

/** @var $repository \eZ\Publish\API\Repository\Repository */
$repository = $container->get('ezpublish.api.repository');
/** @var $logger
\Symfony\Component\HttpKernel\Log\LoggerInterface|\Psr\Log\LoggerInterface */
// PSR LoggerInterface is used in eZ Publish 5.1 / Symfony 2.2
$logger = $container->get('logger');

Running legacy scripts and cronjobs

Legacy scripts can be executed form the Symfony CLI, by using the ezpublish:legacy:script command,
specifying the path to the script as argument.

The command will need to be executed from eZ Publish's 5 root, and the path to the desired script must exist in the folder.ezpublish_legacy
Here's a usage example:

php ezpublish/console --env=prod ezpublish:legacy:script
bin/php/ezpgenerateautoloads.php

Here we made sure to specify --env=prod, this is needed for all legacy scripts that clear cache, otherwise they will will clear dev environment
cache instead of prod for Symfony stack.

Script help

If you want to access the script's help please be aware that you will need to use the newly introduced option, since --help is--legacy-help
already reserved for the CLI help.

Retrieve services from the container

Tip
The example above works in legacy modules and CLI scripts

Note: This feature has been introduced in eZ Publish 5.1.

Important
Running legacy scripts and cronjobs through the Symfony stack is highly recommended !
Otherwise, features from the Symfony stack cannot be used (i.e. HTTP cache purge) and cache clearing. NB: Some script we know
won't affect cache, are still documented to be executed the direct way.

Options and arguments
Always pass the legacy script options and arguments script path, otherwise they will be lost.AFTER

The --legacy-help option should be added before the path to the script for this to work.

Here's an example:

php ezpublish/console --env=prod ezpublish:legacy:script --legacy-help
bin/php/ezpgenerateautoloads.php

The same logic will apply for cronjob execution.
Legacy cronjobs are triggered by the legacy script, which expects the name of the cronjob to run as a parameter.runcronjobs.php
This is how you can run cronjobs from the Symfony CLI:

php ezpublish/console --env=prod ezpublish:legacy:script runcronjobs.php
frequent

Also, if you require using additional script options, please be sure to use the long name, such as or to avoid conflicts--siteaccess --debug
between script and CLI options.
For more details regarding legacy cronjobs execution please refer to the chapter existing in doc.ez.no.Running cronjobs

Legacy bundles

Most customization work on eZ Publish legacy was done through Extensions. Due to the current dual-kernel architecture, many features written
for the new stack will require some matching legacy code (a FieldType will require the equivalent datatype, a feature might require back-office
customization...). In order to facilitate this, legacy bundles were implemented.

They allow you to place a legacy extension (or several) within a Symfony 2 bundle. Any such extension will be installed inside ezpublish_lega
, and automatically enabled as long as the bundle is registered.cy/extension

Creating a legacy bundle extension

Example: https://github.com/ezsystems/CommentsBundle

Legacy extensions must:

be placed within the bundle, within an subfolderezpublish_legacy

must be contained in their own subfolder: Acme/AcmeBundle/ezpublish_legacy/acmeextension
must contain an fileextension.xml

A symlink (by default) will be created in pointing to the folder. Starting from there, it willezpublish_legacy/extension acmeextension
behave like any regular legacy extension.

Alternative: referencing an existing legacy extension via composer

Example: .https://github.com/ezsystems/ngsymfonytools-bundle

An alternative use-case is also covered: you have an existing legacy extension, and a new stack bundle depends on it. It is possible to reference
this legacy extension, without copying anything from it, and have it automatically installed and enabled when the bundle is installed and
registered.

To do so, the bundle's Bundle class must implement an extra interface, eZ\Bundle\EzPublishLegacyBundle\LegacyBundles\LegacyBu
 ndleInterface . This interface specifies a method, that is expected to return an array of legacy extensionsgetLegacyExtensionsNames()

names. Those legacy extension names will be enabled in legacy.

In ngsymfonytoolsbundle, we have two things:

 the legacy extensioncomposer.json requires
When the bundle is installed using composer, the legacy extension gets installed inside legacy
EzSystemsNgsymfonytoolsBundle.php implements , and returns ,getLegacyExtensionsNames() array('ngsymfonytools')
automatically enabling the extension in legacy.

Available starting from v5.3 / 2014.03.

http://doc.ez.no/eZ-Publish/Technical-manual/5.x/Features/Cronjobs/Running-cronjobs
https://github.com/ezsystems/CommentsBundle
https://github.com/ezsystems/ngsymfonytools-bundle
https://github.com/ezsystems/ngsymfonytools-bundle/blob/master/composer.json#L12

Running the legacy bundle install script manually

By default, will call the legacy bundle install script after update and install. If for some reason, youezpublish-community/composer.json
want to do it manually, it looks a lot like asset install scripts:

php ezpublish/console ezpublish:legacybundles:install_extensions

 By default, it will create an absolute symlink, but options exist to use a hard copy () or a relative link ().–copy --relative

The script will also avoid overwriting existing targets if they aren't links to the bundle. The option will make the script existing--force erase
targets before copying/linking.

	Legacy code and features

