Design
Introduction

This page covers design in eZ Platform in a general aspect. If you want to learn about how to
display content and build your content templates, you might want to check Content Rendering.

To apply a template to any part of your webpage, you need three (optionally four) elements:

1. An entry in the configuration that defines which template should be used in what situation

2. The template file itself

3. Assets used by the template (for example, CSS or JS files, images, etc.)

4. (optional) A custom controller used when the template is read which allows you more
detailed control over the page.

Configuration

Each template must be mentioned in a configuration file together with a definition of the situation in
which it is used. You can use the ezpl at f orm yni file located in the app/ conf i g/ folder, or
create your own separate configuration file in that folder that will list all your templates.

If you decide to create a new configuration file, you will need to import it by including an
import statement in ezpl at f orm ym . Add the following code at the beginning of ezpl

atformym :

i nports:
- { resource: <your_file_nane>ym }

If you are using the recommended .yml files for configuration, here are the basic rules for
this format:

The configuration is based on pairs of a key and its value, separated by a colon,
presented in the following form: key: value. The value of the key may contain further
keys, with their values containing further keys, and so on. This hierarchy is marked using
indentation — each level lower in the hierarchy must be indented in comparison with its
parent.

A short configuration file can look like this:

In this topic:

® Introduction
® Configuration
® Template file
® Assets
® Controller
® Usage
® Creating a new
design using Bundle

Inheritance
® Creating a
bundle
® Configuring
bundle to
inherit from
another
® Known
limitation
® Reference
® Twig Helper
® Legacy
® Listing the available
parameters
® Retrieving legacy
information

https://doc.ez.no/display/DEVELOPER/Content+Rendering

Sample configuration file

ezpubl i sh:
system
defaul t:
user:
| ayout: pagel ayout.htm .twi g
content _vi ew.
full:
article:
tenplate: fulllarticle.htm .twg
mat ch:
I dentifier\Content Type:
[article]
bl og_post:

controller:
app. control | er. bl og: showBl ogPost Act i on

tenpl at e:
full\blog _post.htm .twig
mat ch:
I dentifier\Content Type:
[bl og_post]
l'ine:
article:
template: line\larticle.htm .twg
mat ch:
I dentifier\ ContentType:
[article]

This is what individual keys in the configuration mean:

® ezpublish and syst emare obligatory at the start of any configuration file which defines
views.

def aul t defines the siteaccess for which the configuration will be used. "default”, as the
name suggests, determines what views are used when no other configuration is chosen.
You can also have separate keys defining views for other siteaccesses.

user and | ayout point to the main template file that is used in any situation where no
other template is defined. All other templates extend this one. See below for more
information.

cont ent _vi ewdefines the view provider.

In earlier versions of eZ CMS, | ocat i on_vi ewwas used as the view provider. It is now
deprecated.

e full and! i ne determine the kind of view to be used (see below).

articl e and bl og_post are the keys that start the configuration for one individual case

of using a template. You can name these keys any way you want, and you can have as

many of them as you need.

® t enpl at e names the template to be used in this case, including the folder it is stored in

(starting from app/ Resour ces/ vi ews).

control | er defines the controller to be used in this case. Optional, if this key is absent,

the default controller is used.

® mat ch defines the situation in which the template will be used. There are different criteria
which can be used to "match" a template to a situation, for example a Content Type, a
specific Location 1D, Section, etc. You can view the full list of matchers here: View provider
configuration . You can specify more than one matcher for any template; the matchers will
be linked with an AND operator.

In the example above, three different templates are mentioned, two to be used in full view, and one

https://doc.ez.no/display/DEVELOPER/Content+Rendering#ContentRendering-Viewproviderconfiguration
https://doc.ez.no/display/DEVELOPER/Content+Rendering#ContentRendering-Viewproviderconfiguration

in line view. Notice that two separate templates are defined for the "article” Content Type. They use
the same matcher, but will be used in different situations — one when an Atrticle is displayed in full
view, and one in line view. Their templates are located in different folders. The line template will
also make use of a custom controller, while the remaining cases will employ the default one.

Full, line and other views

Each Content item can be rendered differently, using different templates, depending on
the type of view it is displayed in. The default, built-in views are full (used when the
Content item is displayed by itself, as a full page), line (used when it is displayed as an
item in the list, for example a listing of contents of a folder), and embed (used when one
Content item is embedded in another). Other, custom view types can be created, but
only these three have built-in controllers in the system.

See View provider configuration for more details.

Template file

Templates in eZ Platform are written in the Twig templating language.

Twig templates in short

At its core, a Twig template is an HTML frame of the page that will be displayed. Inside
this frame you define places (and manners) in which different parts of your Content items
will be displayed (rendered).

Most of a Twig template file can look like an ordinary HTML file. This is also where you
can define places where Content items or their fields will be embedded.

The configuration described above lets you select one template to be used in a given situation, but
this does not mean you are limited to only one file per case. It is possible to include other templates
in the main template file. For example, you can have a single template for the footer of a page and
include it in many other templates. Such templates do not need to be mentioned in the
configuration .yml file.

See Including Templates in Symfony documentation for more information on including
templates.

The main template for your webpage (defined per siteaccess) is placed in the pagel ayout . ht m
. twi g file. This template will be used by default for those parts of the website where no other
templates are defined.

A pagel ayout . ht . t wi g file exists already in Demo Bundles, but if you are using a clean
installation, you need to create it from scratch. This file is typically located in a bundle, for example
using the built-in AppBundle: sr ¢/ AppBundl e/ Resour ces/ vi ews. The name of the bundle
must the added whenever the file is called, like in the example below.

Any further templates will extend and modify this one, so they need to start with a line like this:

{% ext ends " AppBundl e: : pagel ayout. htm .twi g" %

Although using AppBundle is recommended, you could also place the template files
directly in <i nstal | ati on_f ol der >/ app / Resour ces/vi ews . Then the files
could be referenced in code without any prefix. See Best Practices for more information.

https://doc.ez.no/display/DEVELOPER/Content+Rendering#ContentRendering-Viewproviderconfiguration
http://symfony.com/doc/current/book/templating.html#including-templates
https://doc.ez.no/display/DEVELOPER/Best+Practices

Template paths

In short, the Resour ces/ vi ews part of the path is automatically added whenever a
template file is referenced. What you need to provide is the bundle name, name of any
subfolder within / vi ews/ , and file name, all three separated by colons (:)

To find out more about the way of referencing template files placed in bundles, see Refer
encing Templates in a Bundle in Symfony documentation.

Templates can be extended using a Twig bl ock tag. This tag lets you define a named section in
the template that will be filled in by the child template. For example, you can define a "“title” block in
the main template. Any child template that extends it can also contain a "title" block. In this case
the contents of the block from the child template will be placed inside this block in the parent
template (and override what was inside this block):

pagelayout.html.twig

{# ... #}
<body>
{%block title %
<hl>Default title</hl>
{% endbl ock %
</ body>
{# ... #}
child.html.twig

{% ext ends "AppBundl e: : pagel ayout. htm . twi g" %
{%block title %

<h1>Specific title</hl>
{% endbl ock %

In the simplified example above, when the chi | d. ht nl . t wi g template is used, the "title" block
from it will be placed in and will override the "title" block from the main template — so "Specific title"
will be displayed instead of "Default title."

Alternatively, you can place templates inside one another using the i ncl ude function.

See http://twig.sensiolabs.org/doc/templates.html# for detailed documentation on how to
use Twig.

Embed content in templates

Now that you know how to create a general layout with Twig templates, let's take a look at the ways
in which you can render content inside them.

There are several ways of placing Content items or their Fields inside a template. You can do it
using one of the Twig functions described in detail here .

As an example, let's look at one of those functions: ez_render_field . It renders one selected Field
of the Content item. In its simplest form this function can look like this:

{{ ez_render_field(content, 'description') }}

This renders the value of the Field with identifier "description” of the current Content item (signified
by “content"). You can additionally choose a special template to be used for this particular Field:

http://twig.sensiolabs.org/doc/functions/block.html
https://doc.ez.no/display/DEVELOPER/Content+Rendering#ContentRendering-Reference
https://doc.ez.no/display/DEVELOPER/Content+Rendering#ContentRendering-ez_render_field
http://symfony.com/doc/current/book/templating.html#referencing-templates-in-a-bundle
http://symfony.com/doc/current/book/templating.html#referencing-templates-in-a-bundle
http://twig.sensiolabs.org/doc/functions/include.html
http://twig.sensiolabs.org/doc/templates.html

{{ ez_render _field(
content,
"description',
{ "tenplate':
" AppBundl e: fi el ds: description.htm.tw g }
) 1}

As you can see in the case above, templates can be created not only for whole pages,
but also for individual Fields.

Another way of embedding Content items is using the render_esi function (which is not an
eZ-specific function, but a Symfony standard). This function lets you easily select a different
Content item and embed it in the current page. This can be used, for instance, if you want to list the
children of a Content item in its parent.

{{ render _esi(controller('ez_content:viewAction',
{locationld: 33, viewType: '"line'})) }}

This example renders the Content item with Location ID 33 using the line view. To do this, the
function applies the 'ez_content:viewAction' controller. This is the default controller for rendering
content, but can be substituted here with any custom controller of your choice.

Assets

Asset files such as CSS stylesheets, JS scripts or image files can be defined in the templates and
need to be included in the directory structure in the same way as with any other web project.
Assets are placed in the web/ folder in your installation.

Instead of linking to stylesheets or embedding images like usually, you can use the asset function.

Controller

While it is absolutely possible to template a whole website using only Twig, a custom PHP
controller gives many more options of customizing the behavior of the pages.

See Custom controllers for more information.

Usage

Creating a new design using Bundle Inheritance

Due to the fact that eZ Platform is built using the Symfony 2 framework, it is possible to benefit
from most of its stock features such as Bundle Inheritance. To learn more about this concept in
general, check out the related Symfony documentation.

Bundle Inheritance allows you to customize a template from a parent bundle. This is very
convenient when creating a custom design for an already existing piece of code.

The following example shows how to create a customized version of a template from the
DemoBundle.
Creating a bundle

Create a new bundle to host your design using the dedicated command (from your app
installation):

http://symfony.com/doc/current/book/templating.html#linking-to-assets
https://doc.ez.no/display/DEVELOPER/Content+Rendering#ContentRendering-Customcontrollers
http://symfony.com/doc/current/cookbook/bundles/override.html

php app/ consol e generate: bundl e

Configuring bundle to inherit from another

Following the related Symfony documentation, modify your bundle to make it inherit from the
"eZDemoBundle". Then copy a template from the DemoBundle in the new bundle, following the
same directory structure. Customize this template, clear application caches and reload the page.
You custom design should be available.

Known limitation

If you are experiencing problems with routes not working after adding your bundle, take a look at thi
S issue.

Reference

Twig Helper

eZ Platform comes with a Twig helper as a global variable named ezpubl i sh .

This helper is accessible from all Twig templates and allows you to easily retrieve useful
information.

Property Description

ezpubl i sh. si teaccess Returns the current siteaccess.

ezpubl i sh. root Location Returns the root Location object

ezpubl i sh.requestedUri Stri ng Returns the requested URI string (also known

as semanticPathlinfo).

ezpublish. systenlri String Returns the "system" URI string. System URI
is the URI for internal content controller. If
current route is not an URLAlias, then the
current Pathinfo is returned.

ezpubl i sh. vi ewPar anet er s Returns the view parameters as a hash.
ezpubl i sh. vi ewPar anet ersString Returns the view parameters as a string.
ezpubl i sh. | egacy Returns legacy information.

ezpubl i sh.transl ati onSi t eAccess Returns the translation SiteAccess for a given

language, or null if it cannot be found.

ezpubl i sh. avai | abl eLanguages Returns the list of available languages.
ezpubl i sh. confi gResol ver Returns the config resolver.
Legacy

ezpubl i sh. | egacy is only available when viewing content in legacy fallback (e.g.
no corresponding Twig templates)

The ezpubl i sh. | egacy property returns an object of type ParameterBag, which is a container
for key/value pairs, and contains additional properties to retrieve/handle legacy information.

Property Description

http://symfony.com/doc/current/cookbook/bundles/inheritance.html
https://jira.ez.no/browse/EZP-23575
https://jira.ez.no/browse/EZP-23575
http://symfony.com/doc/master/cookbook/templating/global_variables.html
http://api.symfony.com/2.8/Symfony/Component/HttpFoundation/ParameterBag.html

ezpubl i sh. | egacy. al | Returns all the parameters, with all the
contained information.

ezpubl i sh. | egacy. keys Returns the parameter keys only.
ezpubl i sh. | egacy. get Returns a parameter by name.
ezpubl i sh. | egacy. has Returns true if the parameter is defined.

Listing the available parameters

You can list the available parameters in ezpubl i sh. | egacy by using the ezpubl i sh. | egacy.
keys property, as shown in the following example:

Example on retrieving the available parameters under
ezpublish.legacy

{{ dunp(ezpublish.legacy. keys()) }}

which will give a result similar to:

array
0 => string 'view paraneters' (I|ength=15)
1 => string 'path' (Iength=4)
2 => string 'title_path' (Ilength=10)
3 => string 'section_id (Ilength=10)
4 => string 'node_id" (Iength=7)
5 => string 'navigation_part' (Iength=15)
6 => string 'content_info' (Iength=12)
7 => string 'tenplate_list' (Ilength=13)
8 => string 'cache_ttl' (Iength=9)
9 => string 'is_default_navigation_part’
(1 engt h=26)
10 => string 'css_files' (Ilength=9)
11 => string 'js _files' (length=8)
12 => string 'css_files_configured
(1 engt h=20)
13 => string 'js_files_configured
(1 engt h=19)

Retrieving legacy information

Legacy information is accessible by using the ezpubl i sh. | egacy. get property, which will allow
you to access all data contained in $module_result, from the legacy kernel.

This allows you to import information directly into twig templates. For more details please check the
available examples on using the ezpubl i sh. | egacy. get property for retrieving persistent
variables and assets.

As a usage example, if you want to access the legacy information related to ‘content_info' you can
do it, as shown in the following example:

http://doc.ez.no/eZ-Publish/Technical-manual/4.x/Templates/The-pagelayout/Variables-in-pagelayout#module_result
https://confluence.ez.no/display/EZP/Legacy+template+fallback#Legacytemplatefallback-Persistentvariable
https://confluence.ez.no/display/EZP/Legacy+template+fallback#Legacytemplatefallback-Persistentvariable
https://confluence.ez.no/display/EZP/Legacy+template+fallback#Legacytemplatefallback-Assets

Example on accessing 'content_info' under
ezpublish.legacy

{{ ezpublish.legacy.get('content_info') }}

The previous call will return the contents on the ‘content_info' as an ar r ay, and if we dunp it the
result will be similar to the following:

array
"object_id => string '57" (Ilength=2)
"node_id" => string '2" (length=1)
"parent_node_id" => string '1" (Iength=1)
‘class_id" => string '23" (length=2)
"class_identifier' => string 'landi ng_page

(1 engt h=12)
"renote_id => string

' 8a9c9c761004866f b458d89910f 52bee’ (| engt h=32)
‘node_renpte_id => string

' £3e90596361e31d496d4026eb624¢983' (| engt h=32)
'of fset' => bool ean fal se
"viewnrode' => string 'full' (Ilength=4)
"navigation_part _identifier' => string

'ezcontentnavi gationpart' (Il ength=23)
'node_depth' => string '1" (Iength=1)

‘url _alias' => string '" (length=0)
‘current | anguage' => string 'eng-CB
(1 engt h=6)

'l anguage_mask' => string '3 (Ilength=1)
"main_node_id" => string '2' (length=1)
"mai n_node_url _alias' => bool ean fal se
persi stent _variable' =>
array
"css files' =>
array
0 => string 'video.css' (length=9)
"ijs files' =>
array
0 => string 'video.js' (length=8)
class_group' => bool ean fal se
state' =>
array
2 => string '1' (length=1)
state_identifier' =>
array
0 => string 'ez_ | ock/not_I| ocked
(1 engt h=18)
"parent _class_id => string '1" (length=1)
"parent _class_identifier' => string 'folder’
(1 engt h=6)
'parent _node _renote_id => string
' 629709ba256f e317c3ddcee35453a96a’ (| engt h=32)
"parent _object_renote_id => string
' e5c9db64baadbh82ab8db54f 0e2192ec3' (I engt h=32)

Additionally, for retrieving information contained in 'content_info' such as the current language of
the content in the page you can do it like in the following example:

Example on retrieving 'current_language'

{{

ezpublish. | egacy. get('content_info')[' current_| anguage']

H}

	Design

