
Using Composer
Keeping your system up-to-date is important to make sure it is running optimally and securely. The
update mechanism in eZ software is using the standard PHP packaging system called de facto Co

. mposer

This makes it easy to adapt package installs and updates to your workflow, allowing you to test
new/updated packages in a development environment, place the changes in your version control
system (git, Subversion, Mercurial, etc.), pull in those changes to a staging environment and, when
approved, put them in production.

Installing Composer
Prerequisite to using composer with eZ Enterprise software

Setting up Authentication tokens for access to commercial updates
Optional: Save authentication information in auth.json to avoid repeatedly
typing it

Update workflow Using Composer
1. Running composer update and version changes in development
2. Installing versioned updates on other development machines and/or staging ->
production

General notes on use of Composer
Installing additional packages via Composer
Dumping autoload for better performance
Best practice for Bundles

Documentation
Git repository naming
Composer Metadata

Installing Composer

Composer is a command-line tool, so the main way to install it is via command line from inside the
root directory of the (eZ) software:

php -r "readfile('https://getcomposer.org/installer');"
| php

By doing it this way you will need to execute further Composer commands using php
. If you'd rather prefer to install Composer globally on your machine instead ofcomposer.phar

inside each and every project that uses it, then follow these instructions in online Composer
.documentation

Prerequisite to using composer with eZ Enterprise

software

This section describes features available only in eZ Enterprise.

Setting up Authentication tokens for access to commercial updates

Installing Composer
Prerequisite to using
composer with eZ Enterprise
software

Setting
up Authentication
tokens for access to
commercial updates

Optional:
Save
authenticati
on
information
in auth.json
to avoid
repeatedly
typing it

Update workflow Using
Composer

1. Running
composer update
and version changes
in development
2. Installing
versioned updates
on other
development
machines and/or
staging ->
production

General notes on use of
Composer

Installing additional
packages via
Composer
Dumping autoload
for better
performance
Best practice for
Bundles

Documentat
ion
Git
repository
naming
Composer
Metadata

Composer is an opensource PHP packaging system to manage dependencies.

This makes it easy to adapt package installs and updates to your workflow, allowing you
to test new/updated packages in a development environment, put the changes in your
version control system (git, Subversion, Mercurial, etc.), pull in those changes on a
staging environment and, when approved, put it in production.

Composer download in current folder:

https://getcomposer.org/
https://getcomposer.org/
https://getcomposer.org/doc/00-intro.md#globally
https://getcomposer.org/doc/00-intro.md#globally
https://getcomposer.org/

1.
2.

3.

Out of the box Composer uses a packaging repository called to find all open-sourcepackagist.org
packages and their updates. Additional commercial packages are available for eZ Enterprise
subscribers at updates.ez.no/bul/ (which is password-protected, you will need to set up

.authentication tokens as described below to get access)

To get access to these updates log in to your service portal on and look for thesupport.ez.no
following on the screen:"Maintenance and Support agreement details"

Click "Create token" (This requires the "Portal administrator" access level.)
Fill in a label describing the use of the token. This will allow you to revoke access later.

Example, if you need to provide access to updates to a third party, a good
example would be "53-upgrade-project-by-partner-x"

Copy the password, !you will not get access to it again

After this, when running Composer to get updates as described below, you will be asked for a
Username and Password. Use:

as Username – your Installation key found above on the "Maintenance and Support
 page in the service portalagreement details"

as Password – the token password you retrieved in step 3.

Optional: Save authentication information in auth.json to avoid

repeatedly typing it

Composer will ask to do this for you on updates, however if it is disabled, you can create an auth.
 file manually in one of the following ways:json

Option A: Store your credentials in the project directory:

composer config http-basic.updates.ez.no
<installation-key> <token-password>

Option B: If you'd rather want to install it globally in directory forCOMPOSER_HOME
machine-wide use:

composer config --global http-basic.updates.ez.no
<installation-key> <token-password>

Update workflow Using Composer

This section describes the best practice for using Composer, essentially it suggests treating
updates like other code/configuration/* changes on your project, tackling them on a development
machine before staging them for rollout on staging/production.

Support agreement expiry
If your Support agreement expires, your authentication token(s) will no longer work. They
will become active again if the agreement is renewed, but this process may take up to 24
hours. (If the agreement is renewed before the expiry date, there will be no disruption of
service.)

https://packagist.org/
https://updates.ez.no/bul/
https://support.ez.no
https://getcomposer.org/doc/03-cli.md#composer-home

1. Running composer update and version changes in development

Updating eZ software via Composer is nothing different then ,updating other projects via Composer
but for illustration here is how you update your project locally:

php -d memory_limit=-1 composer.phar update --no-dev
--prefer-dist

At this stage you might need to manually clear Symfony's environment class cache (cachedprod
interfaces and lazy services) in case the classes/interfaces in it have changed. This can be done in
the following way:

rm -f app/cache/prod/*.php

When the update has completed and local install is verified to work, make sure to version changes
done to the file (if you use a version control system like). This file contains composer.lock git all

 and makes sure the same version is used amongdetails of which versions are currently used
all developers, staging and eventually production when current changes are approved for
production (assuming you have a workflow for this).

2. Installing versioned updates on other development machines
and/or staging -> production

Installing eZ software packages via Composer is nothing different then installing vanilla packages
, and for illustration here is how you install versioned updates:via Composer

php -d memory_limit=-1 composer.phar install --no-dev
--prefer-dist

composer update

Tip
This will load in all updated packages, from eZ as well as third-party libraries, both used
by eZ and other you may have added. When updating like this it is recommended to take
note of what was updated so you have an idea of what you should test before putting the
updates into production.

Optional prod class cache clearing

Tip
In large development teams make sure people don't blindly update and install third party
components. This might easily lead to version conflicts on and can becomposer.lock
tiring to fix up if happening frequently. A workflow involving composer install and unit test
execution on proposed changes can help avoid most of this, like the Pull Request
workflow available via Github/Bitbucket.

composer install (package installation)

Tip
Here the importance of comes in, as this command will tell Composercomposer.lock
to install packages in exactly the same version as defined in this file. If you don't keep
track of , it will instead just install always the latest version of a packagecomposer.lock
and won't allow you to stage updates before moving towards production.

https://getcomposer.org/doc/03-cli.md#update
https://getcomposer.org/doc/03-cli.md#install
https://getcomposer.org/doc/03-cli.md#install

General notes on use of Composer

Installing additional packages via Composer

Requiring eZ software packages via Composer is also done in same way as requiring vanilla
, and for illustration here is how you install the community-developed packages via Composer EzPri

:ceBundle

php -d memory_limit=-1 composer.phar require
--prefer-dist ezcommunity/ez-price-bundle:~1.0.0@beta

Dumping autoload for better performance

For PHP 5.6 and up you'll get a notable performance improvement by making composer dump
optimized autoload array, this can be done on composer install and update, but also using:

php -d memory_limit=-1 composer.phar dump-autoload --optimize

Best practice for Bundles

Best practice for Bundles is described in Symfony documentation under Best Practices for
, with eZ bundles there is some notable exceptions:Reusable Bundles

Documentation

You may write your documentation using markdown (.md) if you prefer, however .rst is
recommended if you plan to use , as heavily used by many open sourcewritethedocs.org
projects.

Git repository naming

You may omit vendor name in repository naming, assuming vendor name is reflected in
organization / user account it is attached to.
You may also choose to follow composer package naming on repository name which is
more relevant when trying to find a given package later.

Composer Metadata

For defining , the following are at the moment known valid values:"type"
ezplatform-bundle | Symfony bundles that uses eZ Platform features
ezstudio-bundle | Symfony bundles that uses eZ Platform Enterprise Edition
features
symfony-bundle | Standard symfony bundles as described in Symfony doc.

For eZ Publish (legacy) and eZ Publish Platform there where also:
ezpublish-legacy-extension | For standalone 4.x (legacy) extensions, to be
used with ezpublish-legacy-installer
ezpublish-bundle | For eZ Publish Platform 5.x bundles, may
optionally be a ."legacy bundle"

composer install (package installation)

https://getcomposer.org/doc/03-cli.md#require
https://getcomposer.org/doc/03-cli.md#require
https://github.com/ezcommunity/EzPriceBundle
https://github.com/ezcommunity/EzPriceBundle
http://symfony.com/doc/current/cookbook/bundles/best_practices.html
http://symfony.com/doc/current/cookbook/bundles/best_practices.html
http://writethedocs.org
https://github.com/ezsystems/ezpublish-legacy-installer
https://doc.ez.no/display/EZP/Legacy+code+and+features

	Using Composer

