Authenticating a user with multiple user providers

Description In this topic:

® Description
® Solution
® User exposed and
security token
® Customizing the

Symfony provides native support for multiple user providers. This makes it easy to integrate any
kind of login handlers, including SSO and existing 3rd party bundles (e.g. FR3DLdapBundle, HWIO
authBundle, FOSUserBundle, BeSimpleSsoAuthBundle, etc.).

However, to be able to use external user providers with eZ, a valid eZ user needs to be injected

into the repository. This is mainly for the kernel to be able to manage content-related permissions . user class
(but not limited to this). Example _

® |Implementing the
Depending on your context, you will either want to create an eZ user on-t he-f 1y, return an listener

existing user, or even always use a generic user.

Solution

Whenever an external user is matched (i.e. one that does not come from eZ repository, like coming
from LDAP), eZ kernel fires an MVCEvent s: : | NTERACTI VE_LOG N event. Every service listening
to this event will receive an eZ\ Publ i sh\ Cor e\ W\/C\ Synf ony\ Event\ I nt er acti veLogi nEv
ent object which contains the original security token (that holds the matched user) and the
request.

It's then up to the listener to retrieve an eZ user from the repository and to assign it back to the
event object. This user will be injected into the repository and used for the rest of the request.

If no eZ user is returned, the anonymous user will be used.

User exposed and security token

When an external user is matched, a different token will be injected into the security context, the | n
teracti veLogi nToken. This token holds a User W apped instance which contains the originally
matched user and the API user (the one from the eZ repository).

Note that the API user is mainly used for permission checks against the repository and thus stays u
nder the hood.

Customizing the user class

It is possible to customize the user class used by extending ezpubl i sh. security. | ogin_list

ener service, which defaults to eZ\ Publ i sh\ Cor e\ MC\ Synf ony\ Securi ty\ Event Li st ene
r\ SecurityListener.

You can override get User () to return whatever user class you want, as long as it implements eZ
\ Publ i sh\ Cor e\ W\/C\ Synf ony\ Securi ty\ UserlInterface.

Example

Here is a very simple example using the in-memory user provider.

http://symfony.com/doc/2.3/book/security.html#using-multiple-user-providers
https://github.com/Maks3w/FR3DLdapBundle
https://github.com/hwi/HWIOAuthBundle
https://github.com/hwi/HWIOAuthBundle
https://github.com/FriendsOfSymfony/FOSUserBundle
http://github.com/BeSimple/BeSimpleSsoAuthBundle

app/config/security.yml

security:
provi ders:
Chaining in_nenory and ezpublish user
provi ders
chai n_provi der:
chai n:
providers: [in_menory, ezpublish]
ezpubl i sh:
id: ezpublish.security.user_provider
i n_menory:
nmenory:
users:
You will then be able to login
wi th usernane "user" and password "userpass”
user: { password: userpass, roles
["ROLE_USER] }
The "in nenory" provider requires an encoder for
Synf ony\ Conmponent \ Securi t y\ Cor e\ User\ User
encoders:
Synf ony\ Conponent \ Securi t y\ Cor e\ User\ User:
pl ai nt ext

Implementing the listener

services.yml in your AcmeTestBundle

paraneters
acne_test.interactive_event |istener.class:
Acne\ Test Bundl e\ Event Li st ener\ I nt eracti velLogi nLi st ener

services
acne_test.interactive_event |istener
cl ass:
%cne_test.interactive_event _|istener.class%
argunents: [@zpublish. api.service. user]
t ags:
- { nane: kernel.event_subscriber }

Do not mix M\WVCEvent s: : | NTERACTI VE_LOA N event (specific to eZ Platform) and Sec
urityEvents:: | NTERACTI VE_LOGQ Nevent (fired by Symfony security component)

Interactive login listener

<?php
nanmespace Acne\ Test Bundl e\ Event Li st ener;

use eZ\ Publ i sh\ APl \ Reposi t ory\ User Servi ce;

use

eZ\ Publ i sh\ Cor e\ WC\ Synf ony\ Event\ I nt eracti veLogi nEvent;
use eZ\ Publ i sh\ Cor e\ WQ Synf ony\ WCEvent s;

use

Synf ony\ Conponent \ Event Di spat cher\ Event Subscri berlnterfa
ce;

class InteractivelLoginListener inplenents
Event Subscri berl nterface

{
/**
* @ar \eZ\ Publish\API\ Repository\UserService
*/
private $user Service

public function __construct(UserService
$user Servi ce)

{

$t hi s->user Servi ce = $user Servi ce;

}

public static function getSubscribedEvents()
{
return array(
MVCEvent s: : | NTERACTI VE_LOG N =>
"onlnteractivelLogin'
)
}

public function onlnteractivelLogin(
I nteractivelLogi nEvent $event)
{
/1 We just load a generic user and assign it
back to the event.
/1l You may want to create users here, or even
| oad predefined users depending on your own rules.
$event - >set Api User (
$t hi s- >user Servi ce->| oadUser ByLogi n('l ol autruche'));
}
}

	Authenticating a user with multiple user providers

