
Devops
Introduction

Cache Clearing

This page describes commands involved in clearing cache from the command line.

Clearing file cache using the Symfony cache:clear command

Out of the box Symfony provides a command to perform cache clearing. It will delete all file-based
caches, which mainly consist of Twig template, Symfony container, and Symfony route cache, but
also everything else stored in cache folder. Out of the box on a single-server setup this includes
"Content cache". For further information on use, see the help text of the command:

php app/console --env=prod cache:clear -h

Clearing "Content Cache" on a Cluster setup

For setup, the content cache (and) must be set up to beCluster HTTP Cache Persistent Cache
shared among the servers. And while all relevant cache is cleared for you on repository changes
when using the APIs, there might be times where you'll need to clear cache manually:

Varnish: Cache purge
Persistence Cache: Using Cache service

Web Debug Toolbar

When running eZ Platform in the environment you have access to the standard Symfony Webdev
Debug Toolbar. It is extended with some eZ Platform-specific information:

In this topic:

Introduction
Cache Clearing

Clearing file
cache using
the Symfony
cache:clear
command
Clearing
"Content
Cache" on a
Cluster
setup

Web Debug Toolbar
Configuration

Logging and Debug
Configuration

Introduction
Debugging
in dev
environment
Error
logging and
rotation

If you do not specify an environment, by default will clear the cache forcache:clear
the environment. If you want to clear it for you need to to use the --env=proddev prod
option.

On each web server
In setup the command to clear file cache needs to beClustering (several web servers),
executed on each and every web server!

https://doc.ez.no/display/DEVELOPER/Clustering
https://doc.ez.no/display/DEVELOPER/HTTP+Cache
https://doc.ez.no/display/DEVELOPER/Repository#Repository-PersistenceCache
https://doc.ez.no/display/DEVELOPER/HTTP+Cache#HTTPCache-CachePurge
https://doc.ez.no/display/DEVELOPER/Repository#Repository-UsingCacheService
https://doc.ez.no/display/DEVELOPER/Clustering

SPI (persistence)

This section provides the number of non-cached calls and handlers. You can see details ofSPI
these calls in the page.Symfony Profiler

Site Access

Here you can see the name of the current Siteaccess and how it was matched. For reference see
the .list of possible siteaccess matchers

Configuration

Logging and Debug Configuration

Introduction

Logging in eZ Platform consists of two parts, several debug systems that integrates with symfony
developer toolbar to give you detailed information about what is going on. And standard logPSR-3
ger, as provided by Symfony using .Monolog

Debugging in dev environment

When using the Symfony dev , the system out of the box tracks additional metrics for environment
you to be able to debug issues, this includes cache use , and a Stash (done by)StashBundle persis

 use.tence cache

Reducing memory use

If you are running out of memory and don't need to keep track of cache hits and misses.
Then StashBundle tracking, represented by the setting, and persistence cachestash.tracking
logging, represented by the setting parameters.ezpublish.spi.persistence.cache.pers

, can optionally be disabled.istenceLogger.enableCallLogging

stash:
 tracking: false # Default is true
in dev
 tracking_values: false # Default is false
in dev, to only track cache keys not values
 caches:
 default:
 inMemory: false # Default is true
 registerDoctrineAdapter: false

parameters:

ezpublish.spi.persistence.cache.persistenceLogger.enable
CallLogging: false

For long running scripts, instead head over to Executing long-running console
 for some much more relevant info.commands

config_dev.yml

https://doc.ez.no/display/DEVELOPER/Repository#Repository-SPI
http://symfony.com/doc/current/profiler.html
https://doc.ez.no/display/DEVELOPER/SiteAccess#SiteAccess-Availablematchers
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-3-logger-interface.md
https://github.com/Seldaek/monolog
https://doc.ez.no/display/DEVELOPER/Environments
http://stash.tedivm.com/
https://github.com/tedivm/TedivmStashBundle
https://doc.ez.no/display/DEVELOPER/Repository#Repository-Persistencecacheconfiguration
https://doc.ez.no/display/DEVELOPER/Repository#Repository-Persistencecacheconfiguration
https://doc.ez.no/display/DEVELOPER/Executing+long-running+console+commands
https://doc.ez.no/display/DEVELOPER/Executing+long-running+console+commands

Error logging and rotation

eZ Platform uses the Monolog component to log errors, and it has a thatRotatingFileHandler
allows for file rotation.

According to their documentation, it "logs records to a file and creates one logfile per day. It will
also delete files older than ".$maxFiles

But then, their own recommendation is to use " " instead of doing the rotation in thelogrotate
handler as you would have better performance.

If you decided to use Monolog's handler, it can be configured in app/config/config.yml

monolog:
 handlers:
 main:
 type: rotating_file
 max_files: 10
 path:
"%kernel.logs_dir%/%kernel.environment%.log"
 level: debug

More details here:

https://github.com/Seldaek/monolog
http://linuxcommand.org/man_pages/logrotate8.html

https://github.com/Seldaek/monolog
http://linuxcommand.org/man_pages/logrotate8.html

	Devops

