
1.
2.
3.

Extending eZ Platform
Backoffice interface

The backend interface is produced by which provides a JavaScript Singlethe PlatformUI Bundle
Page Application based on . This application is accessible in your browserthe YUI App Framework
at .http://[uri_of_platform]/ez

Technical architecture

The PlatformUI application code is divided into different types of components:

Application: this is the top level component, the PlatformUI application is an instance of it.
It is responsible for authenticating the user and for handling the routing.
Models: models are the main objects handled by the application, they represent our main
domain objects (Content, Location, Content Type, etc.)
View services: view services act between the Application and the Views. They are
configured on the routes and the main responsibility of a view service is to provide the
model (or other data) to the views and to perform the operations requested by the user
(removing a Content item, copying, etc.)
Views: views generate the user interface and handle the user interaction (clicking, form
submitting, etc.). A view can have several sub-views which can have further sub-views
themselves.
Plugins: plugins can enhance the application, the view services or the views for instance
to provide additional features or to tweak the behavior of the plugged component.

The following chart depicts the interaction between those components:

Views: main view, sub-view, side view

The views represent a large part of the application and each of them can be used in three different
contexts:

As the main view
As a sub-view of another (sub-)view
As a side view

Main view

A view used as a main view is configured at the route level to be displayed when the user
navigates to that route.

For instance, when reaching , the user is redirected to the route ()/ez loginForm /ez#/login
and this route is configured in the following way in the application component:

In this topic:

Backoffice interface
Technical
architecture

Views: main
view,
sub-view,
side view
View
services

How are pages
generated?

Browser
side
rendering
Server side
rendering

UI Components
Navigation
hub
Bar views:
Discovery
Bar View,
Action Bar
View, Edit
Action Bar
View
Universal
Discovery
Widget

Extending the Dashboard
Create a block view
Create a template
Create a plugin for
the view
Add modules to
configuration

Further extensibility
Content Type icons

Adding new
Content
Type icons

Custom Javascript
Extending the Form
Builder

Field
definitions
Validators
Signal slots
Other Form
Builder
fields

https://github.com/ezsystems/PlatformUIBundle
http://yuilibrary.com/yui/docs/app/

{
 name: "loginForm",
 path: "/login",
 service: Y.eZ.LoginFormViewService,
 sideViews: {'navigationHub': false, 'discoveryBar':
false},
 view: 'loginFormView',
 callbacks: ['open', 'handleSideViews',
'handleMainView']
}

Among others things, this means the view will be used as the main view whenloginFormView
this route is matched. is actually loginFormView the identifier of the view metadata registered in

.the property of the Applicationview

Sub-view

To avoid having huge main views doing too many things in the application, the views are divided
into smaller parts called sub-views.

For instance, the view used to display a Location is divided into several views at several levels, it
contains:

An action bar view for the right toolbar, which contains:
a view for the Minimize button
a view for the Create button which contains:

a view to list and select a Content Type
a view for the Edit button
...

A Location View tab view which contains:
the Raw Content View to display the fields which contains:

A view for each fields
...

A Location Details tab view
...
A sub-item list view

Side view

A view can also be used as a side view. As its name suggests a side view can represent anything

http://yuilibrary.com/yui/docs/app/#declaring-views
http://yuilibrary.com/yui/docs/app/#declaring-views

that is not part of the main view.

For instance, when displaying a Location, the top menu (the Navigation hub) or the left toolbar (the
Discovery Bar) are side views.

The side views are also used for various widgets providing a service used several times in the
application, such as the Universal Discovery Widget.

View services

The view services act between the Application and the Views for both the main views and the side
views. They are responsible for providing the required data needed by a main view or a side view
to be rendered. A view service will also receive the events triggered by the view to react or provide
the additional data. For that, the view services receive an instance of the JavaScript REST Client.

How are pages generated?

Depending on the part of the PlatformUI Application you are using, the page may be generated in
two different ways. From an end-user perspective, this is almost transparent but as a developer it is
important to understand how the page is generated to be able to extend it.

Browser side rendering

The pages in the content part (as opposed to admin related pages) are fully rendered in the
browser. For instance, when displaying a Location in PlatformUI, the corresponding view service
loads the Location model and the models (Content, Content Type, etc.) with the eZ Platformrelated
REST API (through the JavaScript REST Client) and gives them the LocationView to be displayed
directly by this view and/or by its sub-views. If you open the browser developer tools in the network
panel, you can see the REST requests needed to build the page and they only contain a JSON
structure.

Server side rendering

The pages in the admin are build in a more traditional way as they are partly rendered server side.
For those pages, the view service fetches one (or several) HTML fragment(s) from the server. This
HTML fragment follows a very simple structure and can be generated by any means on the server
and of course, in PlatformUI this is done in a quite standard Symfony controller. By opening the
browser developer tools in the network panel you can see the requests needed to build the section
list page.

UI Components

Navigation hub

The Navigation Hub is a side view displaying the top menu.

It displays 4 :Navigation zones

Content
Page
Performance
Admin Panel

A zone can contain an arbitrary number of . By default, the zoneNavigation zone items Content
has 2 navigation items: and .Content structure Media library

Bar views: Discovery Bar View, Action Bar View, Edit Action Bar View

Bar views provide a set of potential actions for the user.

When navigating in the Content zone, the allows you to discover contentDiscovery Bar View
while the on the right allows you to act on the Content item being viewed (edit,Action Bar View
move, copy, etc.).

When editing a Content item, the on the right allows you to act on theEdit Action Bar View
Content item being edited.

Universal Discovery Widget

The Universal Discovery Widget is a side view triggered when the user needs to pick a Content
item (or a Location). It can provide several . By default, and arDiscovery Methods Browse Search
e available.

1.
2.
3.
4.

Extending the Dashboard

V1.4

eZ Platform contains a Dashboard which shows the user the most relevant Content items divided
into blocks for a quick overview.

Aside from the built-in blocks you can extend the Dashboard with new ones and remove existing
ones.

It can be done in four steps:

Create a block view
Create a template
Create a plugin for the view
Add modules to configuration

Create a block view

The first step is creating a view that will be added to the Dashboard. You can do it based on the
Dashboard Block Asynchronous View. Thanks to this you only need to provide the data to display
in the table.

Using the Dashboard Block Asynchronous View you need to set an of the block. Theidentifier
asynchronous view fires the method to get the data. The data must find_fireLoadDataEvent
itself in an array with the attribute.items

In the example below an block is defined which looks up all content under the fimages /images/
older in the tree:

If you want to create a completely different view, without a table, you can use the
Dashboard Block Base View.

YUI.add('ezs-dashboardblockimagesview', function (Y) {
 'use strict';
 /**
 * Provides the Dashboard Images Block View class
 *
 * @module ez-dashboardblockimagesview
 */
 Y.namespace('eZS');
 var BLOCK_IDENTIFIER = 'images';
 /**
 * The dashboard images block view
 *
 * @namespace eZS
 * @class DashboardBlockImagesView
 * @constructor
 * @extends eZ.DashboardBlockAsynchronousView
 */
 Y.eZS.DashboardBlockImagesView =
Y.Base.create('dashboardBlockImagesView',
Y.eZ.DashboardBlockAsynchronousView, [], {
 initializer: function () {
 this._set('identifier', BLOCK_IDENTIFIER);
 },
 _fireLoadDataEvent: function () {
 this.fire('locationSearch', {
 viewName: 'images-dashboard',
 resultAttribute: 'items',
 loadContentType: true,
 loadContent: true,
 search: {
 criteria: {SubtreeCriterion:
'/1/43/51/'},
 limit: 10
 }
 });
 },
 _getTemplateItem: function (item) {
 return {
 content: item.content.toJSON(),
 contentType: item.contentType.toJSON(),
 location: item.location.toJSON(),
 contentInfo:
item.location.get('contentInfo').toJSON(),
 };
 },
 });
});

In the method you can specify the structure of the item which will be provided_getTemplateItem
to the template. In the example above each item will be an object with four properties.

If you don't intend to change the structure of the item, there's no need to override this
method.

Create a template

Now you have to create a template for the view, for example:

<h2 class="ez-block-title">Images</h2>
<div class="ez-block-wrapper ez-asynchronousview">
 {{#if loadingError}}
 <p class="ez-asynchronousview-error ez-font-icon">
 An error occurred while loading the images list.
 <button class="ez-asynchronousview-retry
ez-button ez-font-icon pure-button">Retry</button>
 </p>
 {{else}}
 <table class="ez-block-items-table">
 <thead class="ez-block-header">
 <tr>
 <th
class="ez-block-head-title">Title</th>
 <th
class="ez-block-head-content-type">Content Type</th>
 <th
class="ez-block-head-version">Version</th>
 <th class="ez-block-head-modified">Last
saved</th>
 </tr>
 </thead>
 <tbody class="ez-block-content">
 {{#each items}}
 <tr class="ez-block-row">
 <td class="ez-block-cell">{{
contentInfo.name }}</td>
 <td class="ez-block-cell">{{ lookup
contentType.names contentInfo.mainLanguageCode }}</td>
 <td class="ez-block-cell">{{
contentInfo.currentVersionNo }}</td>
 <td class="ez-block-cell
ez-block-cell-options">
 {{ contentInfo.lastModificationDate
}}
 <div class="ez-block-row-options">
 <a class="ez-block-option-edit
ez-font-icon" href="{{ path "editContent"
id=contentInfo.id
languageCode=contentInfo.mainLanguageCode }}">
 <a class="ez-block-option-view
ez-font-icon" href="{{ path "viewLocation"
id=location.id languageCode=contentInfo.mainLanguageCode
}}">
 </div>
 </td>
 </tr>
 {{/each}}
 </tbody>
 </table>
 {{/if}}
</div>

Create a plugin for the view

The next step is adding the view and the template to the Dashboard. To do this, you need to create
a plugin for the Dashboard view.

In the initializer you can use the public method from the Dashboard view. In this methodaddBlock
you only have to provide the instance of your view. Here you also set some properties for your new
view: to make sure that the events will bubble up to the other views, and bubbleTargets priori

 where you can set the order of blocks in the Dashboard (higher number goes first).ty

YUI.add('ezs-dashboardblocksplugin', function (Y) {
 'use strict';
 /**
 * The plugin is responsible for adding a new block
to the dashboard.
 *
 * @module ezs-dashboardblocksplugin
 */
 Y.namespace('eZS.Plugin');
 Y.eZS.Plugin.DashboardBlocks =
Y.Base.create('studioDashboardBlocks', Y.Plugin.Base,
[], {
 initializer: function () {

this.get('host').addBlock(this.get('imagesBlockView'));
 }
 }, {
 NS: 'studioDashboardBlocks',
 ATTRS: {
 imagesBlockView: {
 valueFn : function () {
 return new
Y.eZS.DashboardBlockImagesView({
 bubbleTargets: this.get('host'),
 priority: 500
 });
 }
 }
 }
 });
 Y.eZ.PluginRegistry.registerPlugin(
 Y.eZS.Plugin.DashboardBlocks,
['dashboardBlocksView']
);
});

Add modules to configuration

The last thing you have to do is add new modules to the yml configuration:

You may notice that the template is prepared to handle the , because theloadingError
asynchronous view provides it if there are problems with loading data. If no error occurs,
a table with basic info about your images will be displayed.

If for whatever reason you want to remove a block, use another public method, removeB
, and provide it with just the block identifier.lock

ezs-dashboardblocksplugin:
 requires:
 - 'plugin'
 - 'base'
 - 'ez-pluginregistry'
 - 'ezs-dashboardblockimagesview'
 dependencyOf: ['ez-dashboardblocksview']
 path:
%ezstudioui.public_dir%/js/views/services/plugins/ezs-da
shboardblocksplugin.js
ezs-dashboardblockimagesview:
 requires:
 - 'ez-dashboardblockasynchronousview'
 - 'dashboardblockimagesview-ez-template'
 path:
%ezstudioui.public_dir%/js/views/ezs-dashboardblockimage
sview.js
dashboardblockimagesview-ez-template:
 type: 'template'
 path:
%ezstudioui.public_dir%/templates/dashboardblock-images.
hbt

In this example the plugin is added as a dependency of the Dashboard block view, requiring the
new images block view. The Dashboard images view in turn requires the asynchronous view.

After this configuration is complete the Dashboard should display the new block.

Further extensibility

Content Type icons

V1.4

A Content item can be treated as an instance of a Content Type. The type of a Content item is very
important information to provide to the user. The Content Type to which a Content item belongs is
represented graphically using an icon near the Content item name. Essentially, the Content Types
are project-specific so the icons can be easily configured and extended by integrators.

Font icons + CSS

Icons in the PlatformUI interface are provided by an icon font. For Content Types, the idea is to
expand that concept so that while generating the interface, we end up with a code similar to:

 <h1 class="ez-contenttype-icon
ez-contenttype-icon-folder">Folder Name</h1>

With such classes, the is specified to display a Content Type icon. The class h1 ez-contenttype
 makes sure the element is styled for that and gets the default Content Type icon. The-icon

second class is specific to the Content Type based on its identifier and if it's defined in one of the
CSS files, the element will get the custom Content Type icon defined there.

Adding new Content Type icons

The extensibility of Content Type icons is tackled differently depending on the use case, but it relies
on the ability to embed a custom CSS file in PlatformUI with .css.yml

To prevent the need to configure/extend the system, we provide several pre-configured icons for
very common Content Types such as:

product
author
category
gallery / portfolio
blog_post / / blogpost post
blog / weblog
news
pdf
document
photo
comment
wiki
wiki_page / wikipage

There are three ways of choosing Content Type icons:

Pick an icon for a custom Content Type from existing icons

In such a case you need to pick the icon code. For that, can be used untilthe icomoon application
the UI guidelines are up-to-date and reference the available icons. To ease that process and the
readability of the code, we'll use ligatures in the font icon so that the CSS code for a custom
Content Type could look like:

 /* in a custom CSS file included with `css.yml` */
.ez-contenttype-icon-mycontenttypeidentifier:before {
 content: "product"; /* because this icon matches the
usage of such content
 items */
}

Add custom icons

If the icons we provide do not fit a custom Content Type, then a new custom icon font has to be
added. To generate the icon, the Icomoon App can be used (or any other tool). Then, using a
custom CSS stylesheet, this font can be included and the ez-contenttype-icon-<content

 can be configured to use that font.type identifier>

Example:

https://icomoon.io/app/

/* in a custom CSS file included with `css.yml` */
@font-face {
 font-family: 'my-icon-font';
 src:url('../../fonts/my-icon-font.eot');
 src:url('../../fonts/my-icon-font.eot?#iefix')
format('embedded-opentype'),
 url('../../fonts/my-icon-font.woff')
format('woff'),
 url('../../fonts/my-icon-font.ttf')
format('truetype'),
 url('../../fonts/my-icon-font.svg#my-icon-font')
format('svg');
 font-weight: normal;
 font-style: normal;
}
.ez-contenttype-icon-myidentifier:before {
 font-family: 'my-icon-font';
 content: "myiconcode";
}
/* repeated as many times as needed for each custom
Content Type */

Completely override the icon set

The solution for this use case is very close to the previous one. A custom icon font will have to be
produced, loaded with a custom CSS file, and then the style has to beez-contenttype-icon
changed to use that new font.

Example:

/* in a custom CSS file included with `css.yml` */
@font-face {
 font-family: 'my-icon-font';
 src:url('../../fonts/my-icon-font.eot');
 src:url('../../fonts/my-icon-font.eot?#iefix')
format('embedded-opentype'),
 url('../../fonts/my-icon-font.woff')
format('woff'),
 url('../../fonts/my-icon-font.ttf')
format('truetype'),
 url('../../fonts/my-icon-font.svg#my-icon-font')
format('svg');
 font-weight: normal;
 font-style: normal;
}
.ez-contenttype-icon:before {
 font-family: 'my-icon-font'; /* replaces
ez-platformui-icomoon */
 /* no further change needed if the custom icon font
uses the same
 * codes/ligatures
 */
}

Custom Javascript

Custom Javascript can be added to PlatformUI using the following configuration block:

ez_platformui:
 system:
 default:
 javascript:
 files:
 - '<path to js file>'

Extending the Form Builder

V1.7

EZ ENTERPRISE

Form Builder Bundle currently comes with three basic types of fields: Single Line Text, Paragraph
Text and Email.

It was designed to be easy to extend by adding new types of fields.

Field definitions

Default field definitions are available in .Resources\config\default_fields.yml

Field definition structure

Field definitions are contained under the key. Each definition has its own key, e.g. fields single
. Each definition must contain two sections:_line_text

identifier - name of the definition used on the front end
displayName - name displayed in the Page mode editor in the tabfields

The definition can also contain the following optional sections:

validators - defines validators that the field will use. This must contain the validator's
identifier and the values that will be checked during validation, for example:

validators:
 - { identifier: required, value: 1 }

attributes - contains the field's attributes. You can place here custom attributes for new
fields, like in https://github.com/ezsystems/ezstudio-form-builder/blob/master/bundle/Reso

. There are also that are used forurces/config/default_fields.yml#L33 four default attributes
every field: , , and LABEL_NAME LABEL_HELP_TEXT LABEL_ADMIN_LABEL LABEL_PLAC

. If you wish, you can override them in your configuration.EHOLDER_TEXT

views - provides a list of views that will be used to display the field. At least one view must
be defined, with the keys , and , for example:name thumbnail template

https://github.com/ezsystems/ezstudio-form-builder/blob/master/bundle/Resources/config/default_fields.yml#L33
https://github.com/ezsystems/ezstudio-form-builder/blob/master/bundle/Resources/config/default_fields.yml#L33
https://github.com/ezsystems/ezstudio-form-builder/blob/master/lib/Core/Definition/FieldDefinition.php#L16-L19

views:
 basic:
 name: Form Test Line Text Basic
 thumbnail:
/bundles/ezsystemsformbuilder/images/thumbnails/single_l
ine_text/basic.svg
 template:
EzSystemsFormBuilderBundle:fields:single_line_text/basic
.html.twig

Adding a new field definition

This procedure assumes you are creating a separate Bundle to house your new type of form field.

1. Create a YAML file with field definition

Create a YAML configuration file, e.g. , with theResources\config\extended_fields.yml
following code:

fields:
 test_text:
 identifier: testLineText
 displayName: 'Test Line Text'
 validators:
 - { identifier: required, value: 1 }
 attributes:
 name: 'test line attribute'
 views:
 basic:
 name: Form Test Line Text Basic
 thumbnail:
/bundles/ezsystemsformbuilder/images/thumbnails/single_l
ine_text/basic.svg
 template:
EzSystemsFormBuilderBundle:fields:single_line_text/basic
.html.twig

When creating a new template for the field definition, remember to add mandatory ezform-field
class and as shown below: field.id

{% extends
'EzSystemsFormBuilderBundle:fields:field.html.twig' %}
{% block input %}
 <input type="text" class="ezform-field ..." id="{{
field.id }}" placeholder="{{ field.placeholderText }}">
{% endblock %}

2. Modify the classDependencyInjection\TestExtension.php

The class must implement the interface: PrependExtensionInterface

class TestExtension implements PrependExtensionInterface

In the method in add the following lines at the end:prepend TestExtension.php

public function prepend(ContainerBuilder $container)
 {
 ...
 $configFile = __DIR__ .
'/../Resources/config/extended_fields.yml';
 $config =
Yaml::parse(file_get_contents($configFile));

$container->loadFromExtension('ez_systems_form_builder',
$config);
 $container->addResource(new
FileResource($configFile));
 }

Validators

Creating your own validators

You can create your own validators by reproducing the following configuration:

Validator configuration

A validator implements the interfaEzSystems\FormBuilder\SPI\ValidatorInterface.php
ce and extends the abstract class EzSystems\FormBuilder\Core\Validator\Validator.p

.hp

The interface requires the implementation of the following methods:

validate
getLabel
getErrorMessage
setLimitation
getValueType

The method is the one that contains the logic for the validation. It returns whenvalidate true
validation is successful, or when the data does not validate:false

 /**
 * @return bool
 */
 public function validate($value);

The method returns a string with the name of the validator that will be used in the editor:getLabel

 /**
 * @return string
 */
 public function getLabel();

The method returns error message(s) to appear when the methodgetErrorMessage validate
returns :false

 /**
 * @return array
 */
 public function getErrorMessage();

The method allows the configuration of limitations. Its default implementation issetLimitation
contained in the abstract class:Validator

 /**
 * @param mixed $limitation
 */
 public function setLimitation($limitation);

The method returns the name of the checked value type:getValueType

 /**
 * @return string
 */
 public function getValueType();

Currently the abstract class has three value types (defined in Validator Core\Validator\Val
):idator.php

 const TYPE_INTEGER = 'integer';
 const TYPE_STRING = 'string';
 const TYPE_BOOL = 'bool';

The validator must be tagged as . Due to this the form_builder.field_validator Resource
 file contains two entries, one in the sections\config\validator_services.yml parameters

:

form_builder.validator.example.class:
EzSystems\FormBuilder\Core\Validator\ExampleValidator

and one in the section:services

form_builder.validator.example:
 class: '%form_builder.validator.example.class%'
 tags:
 - { name: form_builder.field_validator,
alias: example }

Signal slots

Whenever a form is submitted and stored in a database, lib\Core\SignalSlot\Signal\Form
 emits signal in a service. You can create your own listeners, called SignalSubmit submitForm

slots, to capture the FormSubmit signal.

Below you can find an example of a custom Signal slot. It saves submission to a text file.

<?php
namespace AppBundle\SignalSlot;
use Symfony\Component\Filesystem\Filesystem;
use eZ\Publish\Core\SignalSlot\Slot;
use eZ\Publish\Core\SignalSlot\Signal;
class HandleSubmission extends Slot
{
 /**
 * Receive the given $signal and react on it.
 *
 * @param
EzSystems\FormBuilder\Core\SignalSlot\Signal\FormSubmit
$signal
 */
 public function receive(Signal $signal)
 {
 $fs = new Filesystem();
 $formId = $signal->formId;
 $submission = $signal->submission;
 $created =
$submission->created->format("Y-m-d.H:i:s");
 $dataRows = [];
 foreach ($submission->fields as $field) {
 $dataRows[] = "{$field->label}:
{$field->value}";
 }
 $fs->mkdir("forms/{$formId}");
 $fs->dumpFile("forms/{$formId}/{$created}.txt",
implode("\n", $dataRows));
 }
}

It has to be registered as a tagged Symfony service, like this:

app_bundle.handle_submission:
 class: "AppBundle\SignalSlot\HandleSubmission"
 tags:
 - { name: ezpublish.api.slot, signal:
'\EzSystems\FormBuilder\Core\SignalSlot\Signal\FormSubmi
t' }

Other Form Builder fields

V1.8

Form Builder fields introduced in v1.8 require additional configuration.

Date field

To make use of the Date field you need to add the necessary assets. The assets should be added
in page head with the following code:

{% javascripts
 ...
 'bundles/ezsystemsformbuilder/js/vendors/*/*.js'
%}
 <script type="text/javascript" src="{{ asset_url
}}"></script>
{% endjavascripts %}

{% stylesheets filter='cssrewrite'
 ...
 'bundles/ezsystemsformbuilder/css/vendors/*/*.css'
%}
 <link rel="stylesheet" type="text/css" href="{{
asset_url }}">
{% endstylesheets %}

Adding new date format

If you wish to add a new date format, the in the date field config must follow this pattern:alias

d or - day of the month (1-2 digits)D
 or - day of the month (2 digits)dd DD

 or - month of the year (1-2 digits)m M
 or - month (2 digits)mm MM
 or - year (2 digits)yy YY

 or - year (4 digits)yyyy YYYY

for example:

d-m-yyyy - 16-1-2017
 - mm/dd/yy 01/16/17

	Extending eZ Platform

