
HTTP Cache
Introduction

Smart HTTP cache clearing

Smart HTTP cache clearing refers to the ability to clear cache for Locations/content that is in
relation with the content being currently cleared.

When published, any Content item usually has at least one Location, identified by its URL.
Therefore, HTTP cache being bound to URLs, if a Content item is updated (a new version is
published), we want HTTP cache for all its Locations to be cleared, so the content itself can be
updated everywhere it is supposed to be displayed. Sometimes, clearing cache for the content's
Locations is not sufficient. You can, for instance, have an excerpt of it displayed in a list from the
parent Location, or from within a relation. In this case, cache for the parent Location and/or the
relation need to be cleared as well (at least if an ESI is not used).

The mechanism

Smart HTTP cache clearing is an event-based mechanism. Whenever a content item needs its
cache cleared, the cache purger service sends an  eventezpublish.cache_clear.content
(also identified by  ceZ\Publish\Core\MVC\Symfony\MVCEvents::CACHE_CLEAR_CONTENT
onstant) and passes an eZ\Publish\Core\MVC\Symfony\Event\ContentCacheClearEven

 event object. This object contains the ContentInfo object we need to clear the cache for. Everyt
listener for this event can add Location objects to the .cache clear list

Once the event is dispatched, the purger passes collected Location objects to the purge client,
which will effectively send the cache  request.BAN

Default behavior

By default, following Locations will be added to the cache clear list:

All Locations assigned to content ( )AssignedLocationsListener
Parent Location of all Content item's Locations ( )ParentLocationsListener
Locations for content's relations, including reverse relations (RelatedLocationsListen

)er

Implementing a custom listener

By design, smart HTTP cache clearing is extensible. One can easily implement an event
listener/subscriber to the  event and add Locations to theezpublish.cache_clear.content
cache clear list.

Example

Here's a very simple custom listener example, adding an arbitrary Location to the list.

In this topic:

Introduction
Smart HTTP cache
clearing

The
mechanism
Default
behavior
Implementin
g a custom
listener

Content Cache
Cache and
Expiration
Configuratio
n
Making your
controller
response
content-awa
re
Making your
controller
response
context-awa
re

Configuration
Cache Purge

Overview
Purge types
Varnish:
HTTP purge
type
Purging

Using Varnish
Prerequisite
s
Recommen
ded VCL
base files
Configure
eZ Publish
Update YML
configuratio
n

Usage
Context-aware
HTTP cache

Use case
Feature
HTTP cache
clear
Symfony
reverse
proxy
Varnish
User
context
hash
Workflow
User hash
generation
Credits

Related:

Note
The event is dispatched with a dedicated event dispatcher, ezpublish.http_cache.e

.vent_dispatcher

Important
Cache clear listener services  be tagged as must ezpublish.http_cache.event_su

 or .bscriber ezpublish.http_cache.event_listener



namespace Acme\AcmeTestBundle\EventListener;

use eZ\Publish\API\Repository\LocationService;
use
eZ\Publish\Core\MVC\Symfony\Event\ContentCacheClearEvent
;
use eZ\Publish\Core\MVC\Symfony\MVCEvents;
use
Symfony\Component\EventDispatcher\EventSubscriberInterfa
ce;

class ArbitraryLocationsListener implements
EventSubscriberInterface
{
    /**
     * @var LocationService
     */
    private $locationService;

    public function __construct( LocationService
$locationService )
    {
        $this->locationService = $locationService;
    }

    public static function getSubscribedEvents()
    {
        return [MVCEvents::CACHE_CLEAR_CONTENT =>
['onContentCacheClear', 100]];
    }

    public function onContentCacheClear(
ContentCacheClearEvent $event )
    {
        // $contentInfo is the ContentInfo object for
the content being cleared.
        // You can extract information from it (e.g.
ContentType from its contentTypeId), using appropriate
Repository services.
        $contentInfo = $event->getContentInfo();

        // Adding arbitrary locations to the cache clear
list.
        $event->addLocationToClear(
$this->locationService->loadLocation( 123 ) );
        $event->addLocationToClear(
$this->locationService->loadLocation( 456 ) );
    }
}

Overview of steps to set up
Cluster:

Set up DFS IO
Handler
Configure
Persistence Cache
Configure sessions

https://doc.ez.no/display/DEVELOPER/Steps+to+set+up+Cluster
https://doc.ez.no/display/DEVELOPER/Steps+to+set+up+Cluster
https://doc.ez.no/display/DEVELOPER/Clustering
https://doc.ez.no/display/DEVELOPER/Clustering
https://doc.ez.no/display/DEVELOPER/Repository#Repository-Persistencecacheconfiguration
https://doc.ez.no/display/DEVELOPER/Repository#Repository-Persistencecacheconfiguration
https://doc.ez.no/display/DEVELOPER/Sessions


parameters:
    acme.cache_clear.arbitrary_locations_listener.class:
Acme\AcmeTestBundle\EventListener\ArbitraryLocationsList
ener

services:
    acme.cache_clear.arbitrary_locations_listener:
        class:
%acme.cache_clear.arbitrary_locations_listener.class%
        arguments: [@ezpublish.api.service.location]
        tags:
            - { name:
ezpublish.http_cache.event_subscriber }

Content Cache

 

eZ Platform uses  to manage content "view" cache with an . InSymfony HttpCache expiration model
addition it is extended  to add several advanced features. For content(using FOSHttpCache)
coming from the CMS the following is taken advantage of out of the box:

To be able to always keep cache up to date, cache is made "content-aware" to allow
updates to content to trigger cache invalidation.

Uses a custom  header, which both Symfony and Varnish ProxyX-Location-Id

are able to invalidate cache on (for details see .)Cache purge
To be able to also cache requests by logged-in users, cache is made " ."context-aware 

Uses a custom vary header  to allow pages to var by user  X-User-Hash rights (s
o not per unique user, that is better served by browser cache.)

Cache and Expiration Configuration

ezpublish:
    system:
        my_siteaccess:
            content:
                view_cache: true      # Activates
HttpCache for content
                ttl_cache: true       # Activates
expiration based HttpCache for content (very fast)
                default_ttl: 60       # Number of
seconds an Http response is valid in cache (if ttl_cache
is true)

Making your controller response content-aware

Sometimes you need your controller's cache to be invalidated at the same time as specific content
changes (i.e. , for a menu for instance). To be able to doESI sub-requests with  twig helperrender
that, you just need to add  header to the response object:X-Location-Id

ezplatform.yml

http://symfony.com/doc/current/book/http_cache.html
http://symfony.com/doc/current/book/http_cache.html#http-expiration-and-validation
https://doc.ez.no/display/DEVELOPER/HTTP+Cache#HTTPCache-CachePurge
http://symfony.com/doc/current/book/http_cache.html#using-esi-in-symfony2


use Symfony\Component\HttpFoundation\Response;
 
// Inside a controller action
// "Connects" the response to location #123 and sets a
max age (TTL) of 1 hour.
$response = new Response();
$response->headers->set('X-Location-Id', 123);
$response->setSharedMaxAge(3600);

Making your controller response context-aware

If the content you're rendering depends on a user's permissions, then you should make the
response :context-aware

use Symfony\Component\HttpFoundation\Response;
 
// Inside a controller action
// Tells proxy configured to support this header to take
the rights of a user (user hash) into account for the
cache
$response = new Response();
$response->setVary('X-User-Hash');

Configuration

Cache Purge

This page explains the content cache purge  mechanism used when publishing(aka invalidate)
content from the UI or from a container-aware script, resulting in cache being invalidated either in
the built-in Symfony Reverse Proxy, or on the much faster Varnish reverse proxy.

Overview

eZ Platform returns content-related responses with an  header that are storedX-Location-Id
together by the configured HTTP cache. This allows you to clear  HTTP cache(invalidate)
representing specifically a given Content item. On publishing the content, a cache purger is
triggered with the Content ID in question, which in turn figures out affected content Locations based
on   logic. The returned Location IDs are sent for purge using the purgeSmart HTTP cache clearing
type explained further below.

Purge types

Symfony Proxy: Local purge type

By default, invalidation requests will be emulated and sent to the Symfony Proxy cache
Store. Cache purge will thus be synchronous, meaning no HTTP purge requests will be sent
around when publishing.

https://doc.ez.no/display/DEVELOPER/HTTP+Cache#HTTPCache-SmartHTTPcacheclearing


ezpublish:
    http_cache:
        purge_type: local

Varnish: HTTP purge type

With Varnish you can configure one or several servers that should be purged over HTTP. This
purge type is asynchronous, and flushed by the end of Symfony kernel-request/console cycle (duri

. Settings for purge servers can be configured per site group or site access:ng terminate event)

ezpublish:
    http_cache:
        purge_type: http

    system:
        my_siteacess:
            http_cache:
                purge_servers:
["http://varnish.server1", "http://varnish.server2",
"http://varnish.server3"]

For further information on setting up Varnish, see  .Using Varnish

Purging

While purging on content, updates are handled for you; on actions against the eZ Platform APIs,
there are times you might have to purge manually.

Manual by code

Manual purging from code which takes   logic into account, this is usingSmart HTTP cache clearing
the service also used internally for cache clearing on content updates:

// Purging cache based on content id, this will trigger
cache clear of all locations found by Smart HttpCache
clear
// typically self, parent, related, ..
$container->get('ezpublish.http_cache.purger')->purgeFor
Content(55);

Manually by command with Symfony Proxy

Symfony Proxy stores its cache in the Symfony cache directory, so a regular  commcache:clear
ands will clear it:

ezplatform.yml

ezplatform.yml

https://doc.ez.no/display/DEVELOPER/HTTP+Cache#HTTPCache-UsingVarnish
https://doc.ez.no/display/DEVELOPER/HTTP+Cache#HTTPCache-SmartHTTPcacheclearing


php app/console --env=prod cache:clear

Manual by HTTP BAN request on Varnish

When using Varnish and in need to purge content directly, then the following examples show how
this is done internally by our  FOSHttpCache Varnish proxy client:FOSPurgeClient, and in turn 

For purging all:

BAN / HTTP 1.1 
Host: localhost 
X-Location-Id: .* 

Or with given location ids :(here 123 and 234)  

BAN / HTTP 1.1 
Host: localhost 
X-Location-Id: ^(123|234)$

 

Using Varnish

eZ Platform being built on top of Symfony, it uses standard HTTP cache headers. By default the
Symfony reverse proxy, written in PHP, is used to handle cache, but it can be easily replaced with
any other reverse proxy like Varnish.

Use of Varnish is a requirement for use in Clustering setup, for overview of clustering feature see C
. lustering

 

Prerequisites

A working Varnish 3 or Varnish 4 setup.

Recommended VCL base files

For Varnish to work properly with eZ, you'll need to use one of the provided files as a basis:

Varnish 3 VCL example
Varnish 4 VCL example

Note: Http cache management is done with the help of .FOSHttpCacheBundle
You may need to tweak your VCL further on according to FOSHttpCache

 in order to use features supported by it.documentation

Configure eZ Publish

Update your Virtual Host

Somehow we need to tell php process that we are behind a Varnish proxy and not the built in
Symfony Http Proxy. If you use fastcgi/fpm you can pass these directly to php process, but you can
in all cases also specify them in your web server config.

https://doc.ez.no/display/DEVELOPER/Clustering
https://doc.ez.no/display/DEVELOPER/Clustering
https://github.com/ezsystems/ezplatform/blob/master/doc/varnish/vcl/varnish3.vcl
https://github.com/ezsystems/ezplatform/blob/master/doc/varnish/vcl/varnish4.vcl
http://foshttpcachebundle.readthedocs.org/
http://foshttpcache.readthedocs.org/en/latest/varnish-configuration.html
http://foshttpcache.readthedocs.org/en/latest/varnish-configuration.html


On apache:

<VirthualHost *:80>
    # Configure your VirtualHost with rewrite rules and
stuff
 
    # Force front controller NOT to use built-in reverse
proxy.
    SetEnv SYMFONY_HTTP_CACHE 0
 
 # Configure IP of your Varnish server to be trusted
proxy
    # Replace fake IP address below by your Varnish IP
address
    SetEnv SYMFONY_TRUSTED_PROXIES "193.22.44.22"
</VirtualHost>

On nginx:

fastcgi_param SYMFONY_HTTP_CACHE 0;
# Configure IP of your Varnish server to be trusted
proxy
# Replace fake IP address below by your Varnish IP
address
fastcgi_param SYMFONY_TRUSTED_PROXIES "193.22.44.22";

Update YML configuration

Secondly we need to tell eZ Platform to change to use http based purge client (specifically
, and specify url Varnish can be reached on:FosHttpCache Varnish purge client is used)

ezpublish:
    http_cache:
        purge_type: http
 
    system:
        # Assuming that my_siteaccess_group your
frontend AND backend siteaccesses
        my_siteaccess_group:
            http_cache:
                # Fill in your Varnish server(s)
address(es).
                purge_servers:
[http://my.varnish.server:8081]

my_virtualhost.conf

mysite.com

ezplatform.yml



 

Usage

Context-aware HTTP cache

Use case

As it is based on Symfony 2, eZ Platform uses HTTP cache extended with features like content
. However, this cache management is only available for anonymous users due to HTTPawareness

restrictions.

It is of course possible to make HTTP cache vary thanks to the   response header, but thisVary
header can only be based on one of the request headers (e.g.  ). Thus, to makeAccept-Encoding
the cache vary on a specific context ,(for example a hash based on a user roles and limitations)
this context must be present in the original request.

Feature

As the response can vary on a request header, the base solution is to make the kernel do a
sub-request in order to retrieve the user context hash (aka  ). Once the   hasuser hash user hash
been retrieved, it's injected in the original request in the   custom header, making itX-User-Hash
possible to   the HTTP response on this header:vary

<?php
use Symfony\Component\HttpFoundation\Response;

// ...

// Inside a controller action
$response = new Response();
$response->setVary('X-User-Hash');

This solution is implemented in Symfony reverse proxy (aka  ) and is also accessible toHttpCache
dedicated reverse proxies like Varnish.

 

Note that sharing ESIs across SiteAccesses is not possible by design (see 

 - EZP-22535 Cached ESI can not be shared across pages/siteaccesses due to
 "pathinfo" property CLOSED

for technical details)

Vary by User
In cases where you need to deliver content uniquely to a given user, and tricks like using
JavaScript and cookie values, hinclude, or disabling cache is not an option. Then
remaining option is to vary response by cookie:

$response->setVary('Cookie');

Unfortunately this is not optimal as it will by default vary by all cookies, including those
set by add trackers, analytics tools, recommendation services, etc. However, as long as 

 application backend does not need these cookies, you can solve this by strippingyour
everything but the session cookie. Example for Varnish can be found in the default VCL
examples in part dealing with User Hash, for single-server setup this can easily be
accomplished in Apache / Nginx as well.

https://jira.ez.no/browse/EZP-22535


HTTP cache clear

As eZ Platform uses  , this impacts the following features:FOSHttpCacheBundle

HTTP cache purge
User context hash

Varnish proxy client from FOSHttpCache lib is used for clearing eZ HTTP cache, even when using
Symfony HttpCache. A single  request is sent to registered purge servers, containing a BAN X-Loca

 header. This header contains all Location IDs for which objects in cache need to betion-Id
cleared.

Symfony reverse proxy

Symfony reverse proxy (aka HttpCache) is supported out of the box, all you have to do is to
activate it.

Varnish

User context hash

FOSHttpCacheBundle User Context feature is activated by default.

As the response can vary on a request header, the base solution is to make the kernel do a
sub-request in order to retrieve the context (aka ). Once the  has beenuser context hash user hash
retrieved, it's injected in the original request in the  header, making it possible to X-User-Hash var
 the HTTP response on this header:y

<?php 
use Symfony\Component\HttpFoundation\Response;
 
// ...
 
// Inside a controller action
$response = new Response();
$response->setVary('X-User-Hash');

 

This solution is  and is also accessible to implemented in Symfony reverse proxy (aka )HttpCache d
.edicated reverse proxies like Varnish

Workflow

User hash generation

Please refer to Using Varnish

Name of the . By default eZuser hash header is configurable in FOSHttpCacheBundle
Platform sets it to .**X-User-Hash**

Please refer to .FOSHttpCacheBundle documentation on how user context feature works

http://foshttpcachebundle.readthedocs.org/
http://foshttpcachebundle.readthedocs.org/en/latest/features/user-context.html
http://foshttpcachebundle.readthedocs.org/en/latest/features/symfony-http-cache.html
http://foshttpcache.readthedocs.org/en/latest/varnish-configuration.html
http://foshttpcache.readthedocs.org/en/latest/varnish-configuration.html
https://doc.ez.no/display/DEVELOPER/HTTP+Cache#HTTPCache-UsingVarnish
http://foshttpcachebundle.readthedocs.org/en/latest/reference/configuration/user-context.html
http://foshttpcachebundle.readthedocs.org/en/latest/features/user-context.html#how-it-works


eZ Platform already interferes with the hash generation process by adding current user permissions
and limitations. You can also interfere in this process by .implementing custom context provider(s)

User hash generation with Varnish 3

The behavior described here comes out of the box with Symfony reverse proxy, but it's of course
possible to use Varnish to achieve the same.

# Varnish 3 style for eZ Platform
# Our Backend - We assume that eZ Platform Web server
listen on port 80 on the same machine.
backend ezplatform {
    .host = "127.0.0.1";
    .port = "80";
}

# Called at the beginning of a request, after the
complete request has been received
sub vcl_recv {

    # Set the backend
    set req.backend = ezplatform;

    # ...

    # Retrieve client user hash and add it to the
forwarded request.
    call ez_user_hash;

    # If it passes all these tests, do a lookup anyway;
    return (lookup);
}

# Sub-routine to get client user hash, for context-aware
HTTP cache.
# Don't forget to correctly set the backend host for the
Curl sub-request.
sub ez_user_hash {

    # Prevent tampering attacks on the hash mechanism
    if (req.restarts == 0
        && (req.http.accept ~
"application/vnd.fos.user-context-hash"
            || req.http.x-user-context-hash
        )
    ) {
        error 400;
    }

    if (req.restarts == 0 && (req.request == "GET" ||
req.request == "HEAD")) {
        # Get User (Context) hash, for varying cache by
what user has access to.
        #
https://doc.ez.no/display/EZP/Context+aware+HTTP+cach

Please refer to FOSHttpCacheBundle documentation on how user hashes are being
.generated

http://foshttpcachebundle.readthedocs.org/en/latest/reference/configuration/user-context.html#custom-context-providers
http://foshttpcachebundle.readthedocs.org/en/latest/features/user-context.html#generating-hashes
http://foshttpcachebundle.readthedocs.org/en/latest/features/user-context.html#generating-hashes


        # Anonymous user w/o session => Use hardcoded
anonymous hash to avoid backend lookup for hash
        if (req.http.Cookie !~ "eZSESSID" &&
!req.http.authorization) {
            # You may update this hash with the actual
one for anonymous user
            # to get a better cache hit ratio across
anonymous users.
            # Note: Then needs update every time
anonymous user role assignments change.
            set req.http.X-User-Hash =
"38015b703d82206ebc01d17a39c727e5";
        }
        # Pre-authenticate request to get shared cache,
even when authenticated
        else {
            set req.http.x-fos-original-url    =
req.url;
            set req.http.x-fos-original-accept =
req.http.accept;
            set req.http.x-fos-original-cookie =
req.http.cookie;
            # Clean up cookie for the hash request to
only keep session cookie, as hash cache will vary on
cookie.
            set req.http.cookie = ";" + req.http.cookie;
            set req.http.cookie =
regsuball(req.http.cookie, "; +", ";");
            set req.http.cookie =
regsuball(req.http.cookie, ";(eZSESSID[^=]*)=", ";
\1=");
            set req.http.cookie =
regsuball(req.http.cookie, ";[^ ][^;]*", "");
            set req.http.cookie =
regsuball(req.http.cookie, "^[; ]+|[; ]+$", "");

            set req.http.accept =
"application/vnd.fos.user-context-hash";
            set req.url = "/_fos_user_context_hash";

            # Force the lookup, the backend must tell
not to cache or vary on all
            # headers that are used to build the hash.

            return (lookup);
        }
    }

    # Rebuild the original request which now has the
hash.
    if (req.restarts > 0
        && req.http.accept ==
"application/vnd.fos.user-context-hash"
    ) {
        set req.url         =
req.http.x-fos-original-url;
        set req.http.accept =
req.http.x-fos-original-accept;



        set req.http.cookie =
req.http.x-fos-original-cookie;

        unset req.http.x-fos-original-url;
        unset req.http.x-fos-original-accept;
        unset req.http.x-fos-original-cookie;

        # Force the lookup, the backend must tell not to
cache or vary on the
        # user hash to properly separate cached data.

        return (lookup);
    }
}

sub vcl_fetch {

    # ...

    if (req.restarts == 0
        && req.http.accept ~
"application/vnd.fos.user-context-hash"
        && beresp.status >= 500
    ) {
        error 503 "Hash error";
    }
}

sub vcl_deliver {
    # On receiving the hash response, copy the hash
header to the original
    # request and restart.
    if (req.restarts == 0
        && resp.http.content-type ~
"application/vnd.fos.user-context-hash"
        && resp.status == 200
    ) {
        set req.http.x-user-hash =
resp.http.x-user-hash;

        return (restart);
    }

    # If we get here, this is a real response that gets
sent to the client.

    # Remove the vary on context user hash, this is
nothing public. Keep all
    # other vary headers.
    set resp.http.Vary = regsub(resp.http.Vary, "(?i),?
*x-user-hash *", "");
    set resp.http.Vary = regsub(resp.http.Vary, "^, *",
"");
    if (resp.http.Vary == "") {
        remove resp.http.Vary;
    }

    # Sanity check to prevent ever exposing the hash to
a client.



    remove resp.http.x-user-hash;
}

User hash generation with Varnish 4

// Varnish 4 style for eZ Platform
// Complete VCL example

vcl 4.0;

// Our Backend - Assuming that web server is listening
on port 80
// Replace the host to fit your setup
backend ezplatform {
    .host = "127.0.0.1";
    .port = "80";
}

// Called at the beginning of a request, after the
complete request has been received
sub vcl_recv {

    // Set the backend
    set req.backend_hint = ezplatform;

    // ...

    // Retrieve client user hash and add it to the
forwarded request.
    call ez_user_hash;

    // If it passes all these tests, do a lookup anyway.
    return (hash);
}
 
// Called when the requested object has been retrieved
from the backend
sub vcl_backend_response {
    if (bereq.http.accept ~
"application/vnd.fos.user-context-hash"
        && beresp.status >= 500
    ) {
        return (abandon);
    }
    
    // ...
}

// Sub-routine to get client user hash, for
context-aware HTTP cache.
sub ez_user_hash {

    // Prevent tampering attacks on the hash mechanism
    if (req.restarts == 0
        && (req.http.accept ~



"application/vnd.fos.user-context-hash"
            || req.http.x-user-hash
        )
    ) {
        return (synth(400));
    }

    if (req.restarts == 0 && (req.method == "GET" ||
req.method == "HEAD")) {
        // Get User (Context) hash, for varying cache by
what user has access to.
        //
https://doc.ez.no/display/EZP/Context+aware+HTTP+cache

        // Anonymous user w/o session => Use hardcoded
anonymous hash to avoid backend lookup for hash
        if (req.http.Cookie !~ "eZSESSID" &&
!req.http.authorization) {
            // You may update this hash with the actual
one for anonymous user
            // to get a better cache hit ratio across
anonymous users.
            // Note: You should then update it every
time anonymous user rights change.
            set req.http.X-User-Hash =
"38015b703d82206ebc01d17a39c727e5";
        }
        // Pre-authenticate request to get shared cache,
even when authenticated
        else {
            set req.http.x-fos-original-url    =
req.url;
            set req.http.x-fos-original-accept =
req.http.accept;
            set req.http.x-fos-original-cookie =
req.http.cookie;
            // Clean up cookie for the hash request to
only keep session cookie, as hash cache will vary on
cookie.
            set req.http.cookie = ";" + req.http.cookie;
            set req.http.cookie =
regsuball(req.http.cookie, "; +", ";");
            set req.http.cookie =
regsuball(req.http.cookie, ";(eZSESSID[^=]*)=", ";
\1=");
            set req.http.cookie =
regsuball(req.http.cookie, ";[^ ][^;]*", "");
            set req.http.cookie =
regsuball(req.http.cookie, "^[; ]+|[; ]+$", "");
            set req.http.accept =
"application/vnd.fos.user-context-hash";
            set req.url = "/_fos_user_context_hash";

            // Force the lookup, the backend must tell
how to cache/vary response containing the user hash
            return (hash);
        }
    }



    // Rebuild the original request which now has the
hash.
    if (req.restarts > 0
        && req.http.accept ==
"application/vnd.fos.user-context-hash"
    ) {
        set req.url         =
req.http.x-fos-original-url;
        set req.http.accept =
req.http.x-fos-original-accept;
        set req.http.cookie =
req.http.x-fos-original-cookie;
        unset req.http.x-fos-original-url;
        unset req.http.x-fos-original-accept;
        unset req.http.x-fos-original-cookie;

        // Force the lookup, the backend must tell not
to cache or vary on the
        // user hash to properly separate cached data.

        return (hash);
    }
}

sub vcl_deliver {
    // On receiving the hash response, copy the hash
header to the original
    // request and restart.
    if (req.restarts == 0
        && resp.http.content-type ~
"application/vnd.fos.user-context-hash"
    ) {
        set req.http.x-user-hash =
resp.http.x-user-hash;
        return (restart);
    }

    // If we get here, this is a real response that gets
sent to the client.
    // Remove the vary on context user hash, this is
nothing public. Keep all
    // other vary headers.
    set resp.http.Vary = regsub(resp.http.Vary, "(?i),?
*x-user-hash *", "");
    set resp.http.Vary = regsub(resp.http.Vary, "^, *",
"");
    if (resp.http.Vary == "") {
        unset resp.http.Vary;
    }

    // Sanity check to prevent ever exposing the hash to
a client.
    unset resp.http.x-user-hash;
    if (client.ip ~ debuggers) {
        if (obj.hits > 0) {
            set resp.http.X-Cache = "HIT";
            set resp.http.X-Cache-Hits = obj.hits;
        } else {
            set resp.http.X-Cache = "MISS";



        }
    }
}

New anonymous X-User-Hash

The anonymous X-User-Hash is generated based on the ,  and . The anonymous user group role 38
 hash that is provided in the code above will work only015b703d82206ebc01d17a39c727e5

when these three variables are left unchanged. Once you change the default permissions and
settings, the X-User-Hash will change and Varnish won't be able to effectively handle cache
anymore.

In that case you need to find out the new anonymous X-User-Hash and change the VCL
accordingly, else Varnish will return a no-cache header.

The easiest way to find the new hash is:

1. Connect to your server (  should be enough)shh

2. Add  to your  file< >your-domain.com /etc/hosts

3. Execute the following command:

curl -I -H "Accept: application/vnd.fos.user-context-hash" http://<your-d
>/_fos_user_context_hashomain.com

You should get a result like this:

HTTP/1.1 200 OK
Date: Mon, 03 Oct 2016 15:34:08 GMT
Server: Apache/2.4.18 (Ubuntu)
X-Powered-By: PHP/7.0.8-0ubuntu0.16.04.2
X-User-Hash:
b1731d46b0e7a375a5b024e950fdb8d49dd25af85a5c7dd5116ad2a1
8cda82cb
Cache-Control: max-age=600, public
Vary: Cookie,Authorization
Content-Type: application/vnd.fos.user-context-hash

4. Now, replace the existing X-User-Hash value with the new one:

# Note: This needs update every time anonymous user role
assignments change.
set req.http.X-User-Hash =
"b1731d46b0e7a375a5b024e950fdb8d49dd25af85a5c7dd5116ad2a
18cda82cb";

5. Restart the Varnish server and everything should work fine.

Default options for FOSHttpCacheBundle defined in eZ

The following configuration is defined in eZ by default for FOSHttpCacheBundle. You may override
these settings.

http://your-domain.com
http://your-domain.com
http://your-domain.com


fos_http_cache: 
    proxy_client: 
        # "varnish" is used, even when using Symfony
HttpCache.
        default: varnish
        varnish: 
            # Means http_cache.purge_servers defined for
current SiteAccess.
            servers: [$http_cache.purge_servers$]

    user_context: 
        enabled: true
        # User context hash is cached during 10min
        hash_cache_ttl: 600
        user_hash_header: X-User-Hash

 

Credits

This feature is based on   by  .Context aware HTTP caching post asm89

http://asm89.github.io/2012/09/26/context-aware-http-caching.html
https://github.com/asm89

	HTTP Cache

