
5. Other recipes
Assigning Section to content
Creating a Content Type

Assigning Section to content

The Section that a Content item belongs to can be set during creation, using the property. However, asContentCreateStruct::$sectionId
for many Repository objects properties, the Section can't be changed using a . The reason is still the same: changing aContentUpdateStruct
Content item's Section will affect the subtrees referenced by its Locations. For this reason, it is required that you use the SectionService to
change the Section of a Content item.

$contentInfo = $contentService->loadContentInfo($contentId);
$section = $sectionService->loadSection($sectionId);
$sectionService->assignSection($contentInfo, $section);

This operation involves the , as well as the .SectionService ContentService

$contentInfo = $contentService->loadContentInfo($contentId);

We use to get the Content we want to update the Section for.ContentService::loadContentInfo()

$section = $sectionService->loadSection($sectionId);

SectionService::loadSection() is then used to load the Section we want to assign our Content to. Note that there is no objSectionInfo
ect. Sections are quite simple, and we don't need to separate their metadata from their actual data. However, and SectionCreateStruct Sect

 objects must still be used to create and update Sections.ionUpdateStruct

$sectionService->assignSection($contentInfo, $section);

The actual update operation is done using , with the and the Section as arguments.SectionService::assignSection() ContentInfo

Full code
https://github.com/ezsystems/CookbookBundle/tree/master/Command/AssignContentToSectionCommand.php

assign section to content

assign section to content

assign section to content

assign section to content

SectionService::assignSection() won't return the updated Content, as it has no knowledge of those objects. To get the
Content with the newly assigned Location, you need to reload the using .ContentInfo ContentService::loadContentInfo()
This is also valid for descendants of the Content item. If you have any stored in your execution state, you need to reload them.
Otherwise you would be using outdated Content data.

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/SectionCreateStruct.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/SectionUpdateStruct.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/SectionUpdateStruct.html
https://github.com/docb22/ez-publish-cookbook/tree/master/EzSystems/CookBookBundle/Command/AssignContentToSectionCommand.php
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/ContentService.html#method_loadContentInfo

Creating a Content Type

Creating a is actually almost more complex than creating Content. It really isn't as common, and didn't "deserve" the same kind ofContentType
API as Content did.

Let's split the code in three major parts.

try
{
 $contentTypeGroup = $contentTypeService->loadContentTypeGroupByIdentifier(
'content');
}
catch (\eZ\Publish\API\Repository\Exceptions\NotFoundException $e)
{
 $output->writeln("content type group with identifier $groupIdentifier not found"
);
 return;
}

$contentTypeCreateStruct = $contentTypeService->newContentTypeCreateStruct(
'mycontenttype');
$contentTypeCreateStruct->mainLanguageCode = 'eng-GB';
$contentTypeCreateStruct->nameSchema = '<title>';
$contentTypeCreateStruct->names = array(
 'eng-GB' => 'My content type'
);
$contentTypeCreateStruct->descriptions = array(
 'eng-GB' => 'Description for my content type',
);

First, we need to load the our will be created in. We do this using ContentTypeGroup ContentType ContentTypeService::loadContent
, which gives us back a object. As for content, we then request a TypeGroupByIdentifier() ContentTypeGroup ContentTypeCreateStr

 from the , using , with the desired identifier as theuct ContentTypeService ContentTypeService::newContentTypeCreateStruct()
argument.

Using the create struct's properties, we can set the Type's properties:

the main language () for the Type is set to eng-GB,mainLanguageCode
the content name generation pattern () is set to '<title>': Content items of this type will be named the same as their 'title'nameSchema
field.
the human-readable name for our Type is set using the property. We give it a hash, indexed by the locale ('eng-GB') the name isnames
set in. This locale must exist in the system.
the same way that we have set the property, we can set human-readable descriptions, again as hashes indexed by locale code.names

The next big part is to add FieldDefinition objects to our Content Type.

Full code
https://github.com/ezsystems/CookbookBundle/blob/master/Command/CreateContentTypeCommand.php

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/ContentType/ContentType.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/ContentTypeService.html#method_loadContentTypeGroupByIdentifier
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/ContentTypeService.html#method_loadContentTypeGroupByIdentifier
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/ContentType/ContentTypeGroup.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/ContentTypeService.html#method_newContentTypeCreateStruct
https://github.com/ezsystems/CookbookBundle/blob/master/Command/CreateContentTypeCommand.php

// add a TextLine Field with identifier 'title'
$titleFieldCreateStruct = $contentTypeService->newFieldDefinitionCreateStruct(
'title', 'ezstring');
$titleFieldCreateStruct->names = array('eng-GB' => 'Title');
$titleFieldCreateStruct->descriptions = array('eng-GB' => 'The Title');
$titleFieldCreateStruct->fieldGroup = 'content';
$titleFieldCreateStruct->position = 10;
$titleFieldCreateStruct->isTranslatable = true;
$titleFieldCreateStruct->isRequired = true;
$titleFieldCreateStruct->isSearchable = true;
$contentTypeCreateStruct->addFieldDefinition($titleFieldCreateStruct);

// add a TextLine Field body field
$bodyFieldCreateStruct = $contentTypeService->newFieldDefinitionCreateStruct('body',
'ezstring');
$bodyFieldCreateStruct->names = array('eng-GB' => 'Body');
$bodyFieldCreateStruct->descriptions = array('eng-GB' => 'Description for Body');
$bodyFieldCreateStruct->fieldGroup = 'content';
$bodyFieldCreateStruct->position = 20;
$bodyFieldCreateStruct->isTranslatable = true;
$bodyFieldCreateStruct->isRequired = true;
$bodyFieldCreateStruct->isSearchable = true;
$contentTypeCreateStruct->addFieldDefinition($bodyFieldCreateStruct);

We need to create a object for each our will be made of. Those objectsFieldDefinitionCreateStruct FieldDefinition ContentType
are obtained using . This method expects the FieldDefinition identifier andContentTypeService::newFieldDefinitionCreateStruct()
its type as arguments. The identifiers match the ones from eZ Publish 4 (for TextLine, etc.).ezstring

Each field's properties are set using the create struct's properties:

names and are set using hashes indexed by the locale code, and with the name or description as an argument.descriptions
The is set to 'content'fieldGroup
Fields are ordered using the property, ordered numerically in ascending order. We set it to an integer.position
The translatable, required and searchable boolean flags are set using their respective property: , and isTranslatable isRequired is

.Searchable

Once the properties for each create struct are set, the field is added to the Content Type create struct using ContentTypeCreateStruct::add
.FieldDefinition()

try
{
 $contentTypeDraft = $contentTypeService->createContentType(
$contentTypeCreateStruct, array($contentTypeGroup));
 $contentTypeService->publishContentTypeDraft($contentTypeDraft);
}
catch (\eZ\Publish\API\Repository\Exceptions\UnauthorizedException $e)
{
 $output->writeln("<error>" . $e->getMessage() . "</error>");
}
catch (\eZ\Publish\API\Repository\Exceptions\ForbiddenException $e)
{
 $output->writeln("<error>" . $e->getMessage() . "</error>");
}

The last step is the same as for Content: we create a Content Type draft using , with the ContentTypeService::createContentType() Con
 and an array of objects are arguments. We then publish the Content Type draft using tentTypeCreateStruct ContentTypeGroup Content

.TypeService::publishContentTypeDraft()

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/ContentTypeService.html#method_newFieldDefinitionCreateStruct
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/ContentType/ContentTypeCreateStruct.html#method_addFieldDefinition
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/ContentType/ContentTypeCreateStruct.html#method_addFieldDefinition

	5. Other recipes

