
1.
2.
3.
4.

Templates overview

In this topic:

Introduction
Configuration
Template file
Assets
Controller

Introduction

This page explains the basics of using templates in eZ CMS.

To apply a template to any part of your webpage, you need three (optionally four) elements:

An entry in the configuration that defines which template should be used in what situation
The template file itself
Assets used by the template (for example, CSS or JS files, images, etc.)
(optional) A custom controller used when the template is read which allows you more detailed control over the page.

Configuration

Each template must be mentioned in a configuration file together with a definition of the situation in which it is used. You can use the ezplatfor
 file located in the folder, or create your own separate configuration file in that folder that will list all your templates.m.yml app/config/

A short configuration file can look like this:

For more in-depth topics related to templating, see:

Content view | | | | View provider configuration Default view templates Twig functions How to use a custom controller to display a
content item or location

If you decide to create a new configuration file, you will need to import it by including an import statement in . Add theezplatform.yml
following code at the beginning of :ezplatform.yml

imports:
 - { resource: <your_file_name>.yml }

If you are using the recommended .yml files for configuration, here are the basic rules for this format:

The configuration is based on pairs of a key and its value, separated by a colon, presented in the following form: key: value. The value
of the key may contain further keys, with their values containing further keys, and so on. This hierarchy is marked using indentation –
each level lower in the hierarchy must be indented in comparison with its parent.

https://doc.ez.no/display/TECHDOC/Content+view
https://doc.ez.no/display/TECHDOC/View+provider+configuration
https://doc.ez.no/display/TECHDOC/Default+view+templates
https://doc.ez.no/display/TECHDOC/Twig+functions
https://doc.ez.no/display/TECHDOC/How+to+use+a+custom+controller+to+display+a+content+item+or+location
https://doc.ez.no/display/TECHDOC/How+to+use+a+custom+controller+to+display+a+content+item+or+location

ezpublish:
 system:
 default:
 user:
 layout:
pagelayout.html.twig
 content_view:
 full:
 article:
 template:
full\article.html.twig
 match:

Identifier\ContentType: [article]
 blog_post:
 controller:
app.controller.blog:showBlogPostAction
 template:
full\blog_post.html.twig
 match:

Identifier\ContentType: [blog_post]
 line:
 article:
 template:
line\article.html.twig
 match:

Identifier\ContentType: [article]

This is what individual keys in the configuration mean:

 ezpublish and are obligatory at the start of any configuration file which defines views. system
 default defines the siteaccess for which the configuration will be used. "default", as the name suggests, determines what

views are used when no other configuration is chosen. You can also have separate keys defining views for other
siteaccesses.

 user and point to the main template file that is used in any situation where no other template is defined. All other layout
templates extend this one. See for more information.below

 content_view defines the view provider.

 full and determine the kind of view to be used (see below). line
 article and are the keys that start the configuration for one individual case of using a template. You can blog_post

name these keys any way you want, and you can have as many of them as you need.
 template names the template to be used in this case, including the folder it is stored in (starting from app/Resources/v

).iews
 controller defines the controller to be used in this case. Optional, if this key is absent, the default controller is used.

 match defines the situation in which the template will be used. There are different criteria which can be used to "match" a
template to a situation, for example a Content Type, a specific Location ID, Section, etc. You can view the full list of
matchers here: . You can specify more than one matcher for any template; the matchers will beView provider configuration
linked with an AND operator.

In the example above, three different templates are mentioned, two to be used in full view, and one in line view. Notice that two separate
templates are defined for the "article" Content Type. They use the same matcher, but will be used in different situations – one when an Article is
displayed in full view, and one in line view. Their templates are located in different folders. The line template will also make use of a custom
controller, while the remaining cases will employ the default one.

Sample configuration file

In earlier versions of eZ CMS, was used as the view provider. It is now deprecated.location_view

https://doc.ez.no/display/TECHDOC/View+provider+configuration#Viewproviderconfiguration-Available_matchers

Template file

Templates in eZ CMS are written in the Twig templating language.

The configuration described above lets you select one template to be used in a given situation, but this does not mean you are limited to only one
file per case. It is possible to include other templates in the main template file. For example, you can have a single template for the footer of a
page and include it in many other templates. Such templates do not need to be mentioned in the configuration .yml file.

The main template for your webpage (defined per siteaccess) is placed in the file. This template will be used bypagelayout.html.twig
default for those parts of the website where no other templates are defined.

A file exists already in Demo Bundles, but if you are using a clean installation, you need to create it from scratch. Thispagelayout.html.twig
file is typically located in a bundle, for example using the built-in AppBundle: .src/AppBundle/Resources/views The name of the bundle
must the added whenever the file is called, like in the example below.

Any further templates will extend and modify this one, so they need to start with a line like this:

{% extends "AppBundle::pagelayout.html.twig" %}

Full, line and other views

Each Content item can be rendered differently, using different templates, depending on the type of view it is displayed in. The default,
built-in views are (used when the Content item is displayed by itself, as a full page), (used when it is displayed as an item in thefull line
list, for example a listing of contents of a folder), and (used when one Content item is embedded in another). Other, customembed
view types can be created, but only these three have built-in controllers in the system.

See for more details.View provider configuration

Twig templates in short

At its core, a Twig template is an HTML frame of the page that will be displayed. Inside this frame you define places (and manners) in
which different parts of your Content items will be displayed (rendered).

Most of a Twig template file can look like an ordinary HTML file. This is also where you can define places where Content items or their
fields will be embedded.

See in Symfony documentation for more information on including templates.Including Templates

Although using AppBundle is recommended, you could also place the template files directly in <installation_folder>/app Reso/
. Then the files could urces/views be referenced in code without any prefix. See for more information.Structuring an eZ project

Template paths
In short, the part of the path is automatically added whenever a template file is referenced. What you need toResources/views
provide is the bundle name, name of any subfolder within , and file name, all three separated by colons (:)/views/

To find out more about the way of referencing template files placed in bundles, see in SymfonyReferencing Templates in a Bundle
documentation.

https://doc.ez.no/display/TECHDOC/View+provider+configuration
http://symfony.com/doc/current/book/templating.html#including-templates
https://doc.ez.no/display/TECHDOC/Structuring+an+eZ+project
http://symfony.com/doc/current/book/templating.html#referencing-templates-in-a-bundle

Templates can be extended using a Twig tag. This tag lets you define a named section in the template that will be filled in by the child block
template. For example, you can define a "title" block in the main template. Any child template that extends it can also contain a "title" block. In this
case the contents of the block from the child template will be placed inside this block in the parent template (and override what was inside this
block):

{# ... #}
 <body>
 {% block title %}
 <h1>Default title</h1>
 {% endblock %}
 </body>
{# ... #}

{% extends "AppBundle::pagelayout.html.twig" %}
{% block title %}
 <h1>Specific title</h1>
{% endblock %}

In the simplified example above, when the template is used, the "title" block from it will be placed in and will override thechild.html.twig
"title" block from the main template – so "Specific title" will be displayed instead of "Default title."

Embed content in templates

Now that you know how to create a general layout with Twig templates, let's take a look at the ways in which you can render content inside them.

There are several ways of placing Content items or their Fields inside a template. You can do it using one of the Twig functions described in detail
.here

As an example, let's look at one of those functions: . It renders one selected Field of the Content item. In its simplest form this ez_render_field
function can look like this:

{{ ez_render_field(content, 'description') }}

This renders the value of the Field with identifier "description" of the current Content item (signified by "content"). You can additionally choose a
special template to be used for this particular Field:

{{ ez_render_field(
 content,
 'description',
 { 'template': 'AppBundle:fields:description.html.twig' }
) }}

pagelayout.html.twig

child.html.twig

Alternatively, you can place templates inside one another using the function. include

See for detailed documentation on how to use Twig.http://twig.sensiolabs.org/doc/templates.html#

As you can see in the case above, templates can be created not only for whole pages, but also for individual Fields.

http://twig.sensiolabs.org/doc/functions/block.html
https://doc.ez.no/display/TECHDOC/Twig+functions
https://doc.ez.no/display/TECHDOC/Twig+functions
https://doc.ez.no/display/TECHDOC/ez_render_field
http://twig.sensiolabs.org/doc/functions/include.html
http://twig.sensiolabs.org/doc/templates.html

Another way of embedding Content items is using the function (which is not an eZ-specific function, but a Symfony standard). Thisrender_esi
function lets you easily select a different Content item and embed it in the current page. This can be used, for instance, if you want to list the
children of a Content item in its parent.

{{ render_esi(controller('ez_content:viewAction', {locationId: 33, viewType: 'line'}
)) }}

This example renders the Content item with Location ID 33 using the line view. To do this, the function applies the 'ez_content:viewAction'
controller. This is the default controller for rendering content, but can be substituted here with any custom controller of your choice.

Assets

Asset files such as CSS stylesheets, JS scripts or image files can be defined in the templates and need to be included in the directory structure in
the same way as with any other web project. Assets are placed in the folder in your installation.web/

Instead of linking to stylesheets or embedding images like usually, you can use the function. asset

Controller

While it is absolutely possible to template a whole website using only Twig, a custom PHP controller gives many more options of customizing the
behavior of the pages.

See for more information.How to use a custom controller to display a content item or location

http://symfony.com/doc/current/book/templating.html#linking-to-assets
https://doc.ez.no/display/TECHDOC/How+to+use+a+custom+controller+to+display+a+content+item+or+location

	Templates overview

