
Using Composer

Keeping your system up-to-date is important, to make sure your it is running optimally and securely. The update mechanism in eZ Publish
Platform is using the standard PHP packaging system called . de facto Composer
This makes it easy to adapt package installs and updates to your workflow, allowing you to test new/updated packages in a development
environment, put the changes in your version control system (git, Subversion, Mercurial, etc.), pull in those changes on a staging environment
and, when approved, put it in production.

Installing Composer
Prerequisite to using composer

Setting up Authentication tokens for access to commercial updates
Optional: Save authentication information in auth.json to avoid repeatedly typing it

Update workflow Using composer
1. Running composer update and version changes in development
2. Installing versioned updates on other development machines and/or staging -> production

General notes on use of composer
Installing additional eZ packages via composer
Using Composer with Legacy
Dump autoload
Best practice for Bundles

Documentation
Composer Metadata

Error rendering macro 'excerpt-include' : User 'null' does not have permission to view the page 'glossary:Composer'.

Installing Composer

This step is only needed once per machine (per project by default, but installing globally on the machine is also possible. For alternatives see: http
).s://getcomposer.org/download/

Composer is a command line tool, so the main way to install it is via command-line, example:

php -r "readfile('https://getcomposer.org/installer');" | php

NB: this should be executed in the root directory of your eZ Publish installation.

Prerequisite to using composer

Setting up Authentication tokens for access to commercial updates

Out of the box composer uses a packaging repository called to find all open source packages and their updates. Additionalpackagist.org
commercial packages are available for the eZ Publish Platform at updates.ez.no/bul/ (which is password protected, you will need to set up

.authentication tokens as described below to get access)

To get access to these updates log in to your service portal on . If your project is configured for eZ Publish Platform 5.3 or higher,support.ez.no
you will see the following on the screen:"Maintenance and Support agreement details"

eZ Publish Platform 5.3 and higher
This page only applies to eZ Publish Platform 5.3 and higher, for earlier versions of the Enterprise version of eZ Publish consult Service

 available for download at . This page is also generic about using Composer, for instructions specific to aPortal user guide support.ez.no
release, see .release notes

composer download in current folder:

https://getcomposer.org/
https://getcomposer.org/download/
https://getcomposer.org/download/
https://packagist.org/
https://updates.ez.no/bul/
https://support.ez.no
http://support.ez.no
https://doc.ez.no/display/EZP/Releases

1.
2.

3.

Click "Create token" (This requires the "Portal administrator" access level.)
Fill in a label describing the use of the token. This will allow you to revoke access later

Example, if you need to provide access to updates to a third party a good to example would be "53-upgrade-project-by-partner-x"
Copy the password, !you will not get access to this again

When running composer to get updates, you will be asked for a Username and Password. Use:

as Username: your Installation key found higher up on the page in the support portal"Maintenance and Support agreement details"

as Password: the token password you retrieved in step 3.

Optional: Save authentication information in auth.json to avoid repeatedly typing it

Composer will ask to do this for you on updates, however if it is disabled you can create file manually in one of the following ways:auth.json

Option A: Store your credentials in project directory:

composer config http-basic.updates.ez.no <installation-key> <token-password>

Option B: If you rather want to install it globally in directory for machine-wide use:COMPOSER_HOME

composer config --global http-basic.updates.ez.no <installation-key> <token-password>

Update workflow Using composer

This section describes a best practice for use of composer, essentially it suggests treating updates like other code/configuration/* changes on
your project tackling them on a development machine before staging them for roll out on staging/production.

1. Running composer update and version changes in development

Updating eZ Publish Platform via composer is nothing different then , but for illustration here is how youupdating other projects via composer
update your project locally:

php -d memory_limit=-1 composer.phar update --no-dev --prefer-dist

Support agreement expiry
If your Support agreement expires, your authentication token(s) will no longer work. They will become active again if the agreement is
renewed, but this process may take up to 24 hours. (If the agreement is renewed before the expiry date, there will be no disruption of
service.)

composer update

Tip

https://getcomposer.org/doc/03-cli.md#composer-home
https://getcomposer.org/doc/03-cli.md#update

At this stage you might need to manually clear Symfony's environment class cache (cached interfaces and lazy services) in case theprod
classes/interfaces in it has changed, this can be done in the following way:

rm -f ezpublish/cache/prod/*.php

When update has completed, and local install is verified to work, make sure to version (assuming you use a version control system like)git
changes done to file. This is the file that contains and makes sure the samecomposer.lock all details of which versions are currently used
version is used among all developers, staging and eventually production when current changes are approved for production (assuming you have
a workflow for this).

2. Installing versioned updates on other development machines and/or staging -> production

Installing eZ Publish Platform packages via Composer is nothing different then , and for illustration hereinstalling vanilla packages via Composer
is how you install versioned updates:

php -d memory_limit=-1 composer.phar install --no-dev --prefer-dist

General notes on use of composer

Installing additional eZ packages via composer

Also requiring eZ Publish Platform packages via composer is nothing different then , and for illustrationrequiring vanilla packages via Composer
here is how you install a eZ package:

php -d memory_limit=-1 composer.phar require --prefer-dist ezsystems/ezfind-ls:5.3.*

Using Composer with Legacy

Tip: This will load in all updated packages, from eZ as well as third party libraries both used by eZ and others you may have added. So
when updating like this it is recommended to take note of what was updated so you have an idea of what you should test before putting
the updates into production.

optional prod class cache clearing

Tip
Tip2: In large development teams make sure people don't blindly update and install third party components, this might easily lead to
version conflicts on composer.lock file and can be tiring to fix-up if happening frequently. A workflow involving composer install and unit
test execution on proposed changes can help avoid most of this, like available via Github/Bitbucket Pull Request workflow.

composer install (package installation)

Tip
Tip: Here the importance of composer.lock comes in as this command will tell composer to install packages in exactly same version as
defined in composer.lock. If you don't keep track of composer.lock it will instead just install always latests version of a package, hence
not allow you to stage updates before moving it towards production.

composer install (package installation)

https://getcomposer.org/doc/03-cli.md#install
https://getcomposer.org/doc/03-cli.md#require

(eZ Publish) Legacy by design places all important customizable folders within it's own structure. This is not ideal with Composer, as installation
and updates might cause them to become as provided by packages again.
To make sure you are safe from this, and to allow you to version these custom folders independently, it is recommended that you use symlinks
and keep your custom settings, extensions and design . To not have to manually deal with theseoutside of the ezpublish_legacy folder
symlinks it is recommended to use Composer and script commands to make this automated.post-install-cmd post-update-command

Below is a illustration on how this can be setup, see .Composer documentation for further info

{
 "scripts": {
 "post-install-cmd": [
 "MyVendor\\MyClass::symlinkLegacyFolders"
],
 "post-update-cmd": [
 "MyVendor\\MyClass::symlinkLegacyFolders"
]
 }
}

Dump autoload

Avoid to use the following command:

php -d memory_limit=-1 composer.phar dump-autoload --optimize

The dumped file will be too big and can cause an overhead for any request, even Cache.

Best practice for Bundles

Best practice for Bundles is described in Symfony documentation under , with eZ bundles there is someBest Practices for Reusable Bundles
notable exceptions:

Documentation

You may write your documentation using markdown (.md) if you prefer, however .rst is recommended if you plan to use ,writethedocs.org
as heavily used by many open source projects.

Composer Metadata

For defining , the following are at the moment known valid values:"type"
ezpublish-legacy-extension | For standalone 4.x (legacy) extensions, to be used with ezpublish-legacy-installer

Affected extensions
All extensions not provided via composer is affected by this, currently the following extensions from eZ is not provided via composer
and needs to be setup like proposed in this section: and .eznetwork, ezrecommendation ezma

Example on composer.json symlinking

This functionality is desirable to have out of the box in the future, so community contributions on this topic is welcome to find a good
standard convention and script to handle it.

Warning
It causes a PHP Warning "Ambiguous class resolution". For further information this issue to Stash Github repository.

https://getcomposer.org/doc/articles/scripts.md
http://symfony.com/doc/current/cookbook/bundles/best_practices.html
http://writethedocs.org/
https://github.com/ezsystems/ezpublish-legacy-installer
https://github.com/tedious/Stash/issues/181

ezpublish-bundle | For eZ Publish Platform 5.x bundles, may optionally be a ."legacy bundle"
symfony-bundle | Standard symfony bundles as described in Symfony doc.

For eZ Platform and eZ Studio there is also:
ezplatform-bundle | Symfony bundles that uses eZ Platform features (may also be used by bundles that work across 5.x and
6.x)ezpublish-kernel
ezstudio-bundle | Symfony bundles that uses eZ Studio features (and optionally also eZ Platform features)

https://doc.ez.no/display/EZP/Legacy+code+and+features

	Using Composer

