1. Getting started

With the introduction of Symfony 2 as the framework powering eZ Publish 5, the whole eZ Publish 4.x extensions system is changing. Pretty much
everything needs to be done with entirely new concepts. In this chapter, we will see two ways of customizing eZ Publish 5: command line scripts
(for import scripts, for instance), and custom controllers, the eZ Publish 5 equivalent of eZ Publish 4.x custom modules.

® Symfony bundle
® Generating a new bundle
® Creating a command line script in your bundle
® Creating a custom route with a controller action
® routing.yml
¢ DefaultController.php

Symfony bundle

In order to test and use Public API code, you will need to build a custom bundle. Bundles are Symfony's extensions, and are therefore also used
to extend eZ Publish. Symfony 2 provides code generation tools that will let you create your own bundle and get started in a few minutes.

In this chapter, we will show how to create a custom bundle, and implement both: a command line script and a custom route with its own
controller action and view. All shell commands assume that you use some Linux shell, but those commands would of course also work on
Windows systems.

Generating a new bundle

First, change the directory to your eZ Publish root.
$ cd /path/to/ezpublish5

Then use the app/console application with the gener at e: bundl e command to start the bundle generation wizard.

Let's follow the instructions provided by the wizard. Our objective is to create a bundle named EzSyst ens/ Bundl es/ CookBookBundl e, located
in the sr ¢ directory.

$ php ezpublish/consol e generate: bundl e

The wizard will first ask about our bundle's namespace. Each bundle's namespace should feature a vendor name (in our own case: EzSyst ens),
optionally followed by a sub-namespace (we could have chosen to use Bundl e), and end with the actual bundle's name, suffixed with Bundle: Co
okbookBundl e.

https://github.com/docb22/ez-publish-cookbook/tree/master/EzSystems/CookBookBundle/Command

Bundle namespace

Your application code nust be witten in bundles. This command hel ps you generate them
easily.

Each bundl e is hosted under a nanespace (li ke Acne/ Bundl e/ Bl ogBundl e) .
The namespace should begin with a "vendor" nane |ike your company name, your project
nane, or your client nane, followed by one or nore optional category sub-nanmespaces,

and it should end with the bundle nane itself (which nust have Bundle as a suffix).

See http://synfony. conf doc/ current/cookbook/bundl es/ best _practices. ht m #i ndex-1 for
nmore details on bundl e nam ng conventi ons.

Use / instead of \ for the nanespace delinmiter to avoid any problem
Bundl e nanespace: EzSystens/ CookbookBundl e

You will then be asked about the Bundle's name, used to reference your bundle in your code. We can go with the default, EzSyst ens Cookbook
Bundl e. Just hit enter to accept the default.

Bundle name
In your code, a bundle is often referenced by its nane. It can be the concatenation of
al | namespace parts but it's really up to you to cone up with a unique nane (a good
practice is to start with the vendor nane).
Based on the namespace, we suggest EzSystensCookbookBundl e.
Bundl e nanme [EzSyst enmsCookbookBundl e]:

The next question is your bundle's location. By default, the script offers to place it in the sr c folder. This is perfectly acceptable unless you have a
good reason to place it somewhere else. Just hit enter to accept the default.

Bundle directory

The bundl e can be generated anywhere. The suggested default directory uses the
standard conventi ons.

Target directory [/path/to/ezpublish5/src]:

Next, you need to choose the generated configuration's format, out of YAML, XML, PHP or annotations. We mostly use yaml in eZ Publish 5, and
we will use it in this cookbook. Enter 'yml', and hit enter.

Configuration format

Determ ne the format to use for the generated configuration.

Configuration format (ym, xm, php, or annotation) [annotation]: ym

The last choice is to generate code snippets demonstrating the Symfony directory structure. If you're learning Symfony, it is a good idea to accept,
as it will pre-create a controller, yaml files, etc.

Generate snippets & directory structure

To help you get started faster, the comrand can generate sone code snippets for you.

Do you want to generate the whole directory structure [no]? yes

The generator will then summarize the previous choices, and ask for confirmation. Hit enter to confirm.

Summary and confirmation

You are going to generate a "EzSystens\Bundl e\ CookbookBundl e\ EzSyst ens CookbookBundl e"
bundle in "/path/to/ezpublish5/src/" using the "ym" format.

Do you confirm generation [yes]? yes

The wizard will generate the bundle, check autoloading, and ask about the activation of your bundle. Hit enter to both questions to have your
bundle automatically added to your Kernel (ezpubl i sh/ EzPubl i shKer nel . php) and routes from your bundle added to the existing routes (ez
publ i sh/ config/routing.yn).

Activation and generation

Bundl e generation

Generating the bundl e code: OK

Checking that the bundle is autol oaded: K
Confirm automatic update of your Kernel [yes]?
Enabl i ng the bundl e inside the Kernel: K
Confirm autonatic update of the Routing [yes]?
I nporting the bundle routing resource: OK

You can now start using the generated code!

Your bundle should be generated and activated. Let's now see how you can interact with the Public API by creating a command line script, and a
custom controller route and action.

Creating a command line script in your bundle

Writing a command line script with Symfony 2 is very easy. The framework and its bundles ship with a few scripts. They are all started using php
ezpubl i sh/ consol e <command> (app/ consol e in a default symfony 2 application). You can get the complete list of existing command line
scripts by executing php ezpubl i sh/ consol e |i st from the eZ Publish 5 root.

In this chapter, we will create a new command, identified as ezpubl i sh: cookbook: hel | o, that takes an optional name argument, and greets
that name. To do so, we need one thing: a class with a name ending with "Command" that extends Synf ony\ Conponent \ Consol e\ Conmand\
Comrand. Note that in our case, we use Cont ai ner Awar eConmand instead of Conmand, since we need the dependency injection container to
interact with the Public API). In your bundle's directory (sr ¢/ EzSyst ens/ CookbookBundl e), create a new directory named Conmand, and in
this directory, a new file named Hel | oConmand. php.

Add this code to the file:

HelloCommand.php

<?php
nanespace EzSyst ens\ CookBookBundl e\ Command,;

use Synfony\ Component\ Consol e\ | nput\ I nputlnterface;
use Synfony\ Conponent\ Consol e\ Qut put\ Qut put I nterface
use Synfony\ Conponent\ Consol e\ | nput\ | nput Ar gunent ;

class Hel |l oCommand ext ends
\ Synf ony\ Bundl e\ Fr anewor kBundl e\ Command\ Cont ai ner Awar eConmand

{
/**
* Configures the command
*/
protected function configure()

* Executes the command

* @aram | nputlnterface $i nput

* @aram CQut put I nterface $out put

*/
protected function execute(Inputlnterface $input, Qutputlnterface $output)
{
}

This is the skeleton for a command line script.

One class with a name ending with "Command" (Hel | oComrand), extends Synf ony\ Bundl e\ Fr anewor kBundl e\ Conmand\ Conmand, and is
part of our bundle's Command namespace. It has two methods: confi gur e(), and execut e() . We also import several classes & interfaces
with the use keyword. The first two, | nput | nt er f ace and Cut put | nt er f ace are used to 'typehint' the objects that will allow us to provide
input & output management in our script.

Configure will be used to set your command's name, as well as its options and arguments. Execute will contain the actual implementation of your
command. Let's start by creating the conf i gur e() method.

TestCommand::configure()

protected function configure()

{
$t hi s- >set Nane(' ezpubl i sh: cookbook: hell o');
$t hi s->set Definition(
array(
new | nput Argunent (' nane', |nputArgunent::OPTI ONAL, 'An argunent')
)
)
}

First, we use setName() to set our command's name to "ezpubl i sh: cookbook: hel | 0". We then use set Defi ni ti on() to add an
argument, named nane, to our command.

You can read more about arguments definitions and further options in the Symfony 2 Console documentation. Once this is done, if you run php
ezpubl i sh/ consol e |i st, you should see ezpubl i sh: cookbook: hel | o listed in the available commands. If you run it, it should just do
nothing.

http://symfony.com/doc/2.0/components/console/introduction.html

Let's just add something very simple to our execute() method so that our command actually does something.

TestCommand::execute()

protected function execute(Inputlnterface $input, Qutputlnterface $output)

{

/1 fetch the input argument
if (!'$nane = $input->get Argunent('nane'))

{
$name = "Worl d";

}

$output->witeln("Hello $nane");

You can now run the command from the eZ Publish 5 root.

Hello world

$ php ezpublish/consol e ezpublish: cookbook: hell o worl d
Hello world

Creating a custom route with a controller action

In this short chapter, we will see how to create a new route that will catch a custom URL and execute a controller action. We want to create a new
route, / cookbook/ t est , that displays a simple 'Hello world' message. This tutorial is a simplified version of the official one that can be found on
http://symfony.com/doc/current/book/controller.html.

eZ Publish 4 equivalent
This eZ Publish 5 extension would have been a custom module, with its own nodul e. php file, in eZ Publish 4.

During our bundle's generation, we have chosen to generate the bundle with default code snippets. Fortunately, almost everything we need is part
of those default snippets. We just need to do some editing, in particular in two locations: sr c/ EzSyst emrs/ CookbookBund| e/ Resour ces/ con
fig/routing.ym andsrc/EzSyst ens/ CookbookBundl e/ Control | ers/ Defaul t Control | er. php. The first one will be used to
configure our route (/ cookbook/ t est) as well as the controller action the route should execute, while the latter will contain the actual action's
code.

routing.yml

This is the file where we define our action's URL matching. The generated file contains this YAML block

Generated routing.yml

ez_syst ens_cookbook honepage:
pattern: /hell o/ {nane}
defaults: { _controller: EzSystensCookbookBundl e: Def aul t:index }

We can safely remove this default code, and replace it with this

http://symfony.com/doc/current/book/controller.html

Edited routing.yml

ezsyst ens_cookbook_hel | o:
pattern: /cookbook/ hell o/ { nane}
defaults: { _controller: EzSystensCookbookBundl e: Default:hello }

We define a route that matches the URI /cookbook/* and executes the action hello in the Default controller of our bundle. The next step is to
create this method in the controller.

DefaultController.php

This controller was generated by the bundle generator. It contains one method, hel | oAct i on(), that matched the YAML configuration we have
changed in the previous part. Let's just rename the i ndexAct i on() method so that we end up with this code.

DefaultController::helloAction()

public function helloAction($nane)

{
$response = new \ Synf ony\ Conponent\ Ht t pFoundat i on\ Response;
$response- >set Content ("Hel |l o $nane");
return $response;

}

We won't go into details about controllers in this cookbook, but let's walk through the code a bit. This method receives the parameter defined in r o
uting.yn . Itis named "name" in the route definition, and must be named $name in the matching action. Since the action is named "hello" in r o
uting.ym , the expected method name is hel | oActi on.

Controller actions must return a Response object that will contain the response's content, the headers, and various optional properties that affect
the action's behavior. In our case, we simply set the content, using set Cont ent (), to "Hello $name". Simple. Go to http://ezpublish5/cookbook/h
ello/YourName, and you should get "Hello YourName".

The custom EzPublishCoreBundle Controller
For convenience, a custom controller is available at eZ\Bundle\EzPublishCoreBundle\Controller. It gives you with a few commodity
methods:

® getRepository()
Returns the Public API repository, that gives you access to the various services through getContentService(),
getLocationService() and so on;
® getLegacyKernel()
Returns an instance of the eZ\Publish\Core\MVC\Legacy\Kernel, that you can use to interact with the Legacy eZ Publish kernel
® getConfigResolver()
Returns the ConfigResolver that gives you access to configuration data.

You are encouraged to use it for your custom controllers that interact with eZ Publish.

With both command line scripts and HTTP routes, you have the basics you need to start writing Public API code.

http://ezpublish5/cookbook/hello/YourName,
http://ezpublish5/cookbook/hello/YourName,
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Bundle/EzPublishCoreBundle/Controller.html
http://apidoc.ez.no/doxygen/trunk/NS/html/classeZ_1_1Publish_1_1Core_1_1MVC_1_1Legacy_1_1Kernel.html
http://apidoc.ez.no/doxygen/trunk/NS/html/classeZ_1_1Bundle_1_1EzPublishCoreBundle_1_1DependencyInjection_1_1Configuration_1_1ConfigResolver.html

	1. Getting started

