
3. Managing Content
Identifying to the repository with a login and a password
Creating content

The ContentCreateStruct
Setting the fields values
Setting the Location
Creating and publishing

Updating Content
Handling translations
Creating Content containing an image
Create Content with XML Text
Deleting Content

In the following recipes, you will see how to create Content, including complex fields like XmlText or Image.

Identifying to the repository with a login and a password

As seen earlier, the Repository executes operations with a user's credentials. In a web context, the currently logged in user is automatically
identified. In a command line context, you need to manually log a user in. We have already seen how to manually load and set a user using its ID.
If you would like to identify a user using his username and password instead, this can be achieved as follows.

$user = $userService->loadUserByCredentials($user, $password);
$repository->setCurrentUser($user);

Creating content

We will now see how to create Content using the Public API. This example will work with the default Folder (ID 1) Content Type from eZ Publish.

/** @var $repository \eZ\Publish\API\Repository\Repository */
$repository = $this->getContainer()->get('ezpublish.api.repository');
$contentService = $repository->getContentService();
$locationService = $repository->getLocationService();
$contentTypeService = $repository->getContentTypeService();

We first need the required services. In this case: , and .ContentService LocationService ContentTypeService

The ContentCreateStruct

As explained in the , Value Objects are read only. Dedicated objects are provided for Update and Create operations: structs, likePublic API Basics
ContentCreateStruct or UpdateCreateStruct. In this case, we need to use a ContentCreateStruct.

$contentType = $contentTypeService->loadContentTypeByIdentifier('article');
$contentCreateStruct = $contentService->newContentCreateStruct($contentType, 'eng-GB'
);

We first need to get the we want to create a with. To do so, we use ContentType Content ContentTypeService::loadContentTypeByI
, with the wanted identifier, like 'article'. We finally get a ContentTypeCreateStruct using dentifier() ContentType ContentService::newC

authentication

Full code
https://github.com/ezsystems/CookbookBundle/blob/master/Command/CreateContentCommand.php

https://doc.ez.no/display/EZP/Public+API+basics
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/ContentType/ContentType.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/ContentTypeService.html#method_loadContentTypeByIdentifier
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/ContentTypeService.html#method_loadContentTypeByIdentifier
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/ContentService.html#method_newContentCreateStruct
https://github.com/ezsystems/CookbookBundle/blob/master/Command/CreateContentCommand.php

, providing the ContentType and a Locale Code (eng-GB).ontentCreateStruct()

Setting the fields values

$contentCreateStruct->setField('title', 'My title');
$contentCreateStruct->setField('intro', $intro);
$contentCreateStruct->setField('body', $body);

Using our create struct, we can now set the values for our Content's fields, using the method. For now, we will just set the title. setField() set
 for a TextLine Field simply expects a string as input argument. More complex FieldTypes, like Author or Image, expect different inputField()

values.

Setting the Location

In order to set a Location for our object, we must instantiate a . This is done withLocationCreateStruct
LocationService::newLocationCreateStruct(), with the new Location's parent ID as an argument.

$locationCreateStruct = $locationService->newLocationCreateStruct(2);

Creating and publishing

To actually create our Content in the Repository, we need to use ContentService::createContent(). This method expects a ContentCreateStru
, as well as a . We have created both in the previous steps.ct LocationCreateStruct

$draft = $contentService->createContent($contentCreateStruct, array(
$locationCreateStruct));
$content = $contentService->publishVersion($draft->versionInfo);

The LocationCreateStruct is provided as an array, since a Content can have multiple locations.

createContent() returns a new Content Value Object, with one version that has the DRAFT status. To make this Content visible, we need to
publish it. This is done using . This method expects a object as its parameter. In ourContentService::publishVersion() VersionInfo
case, we simply use the current version from , with the property.$draft versionInfo

Updating Content

We will now see how the previously created Content can be updated. To do so, we will create a new draft for our Content, update it using a Cont
, and publish the updated Version.entUpdateStruct

$contentInfo = $contentService->loadContentInfo($contentId);
$contentDraft = $contentService->createContentDraft($contentInfo);

The method can take several type of arguments.ContentCreateStruct::setField()

In any case, whatever the FieldType is, a Value of this type can be provided. For instance, a TextLine\Value can be provided for a
TextLine\Type. Depending on the FieldType implementation itself, more specifically on the fromHash() method every FieldType
implements, various arrays can be accepted, as well as primitive types, depending on the Type.

Full code
https://github.com/ezsystems/CookbookBundle/blob/master/Command/UpdateContentCommand.php

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/ContentService.html#method_newContentCreateStruct
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/ContentCreateStruct.html#method_setField
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/LocationCreateStruct.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/ContentUpdateStruct.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/ContentUpdateStruct.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/ContentCreateStruct.html#method_setField
https://github.com/ezsystems/CookbookBundle/blob/master/Command/UpdateContentCommand.php

To create our draft, we need to load the Content's ContentInfo using . We can then use ContentService::loadContentInfo() ContentSer
 to add a new Draft to our Content.vice::createContentDraft()

// instantiate a content update struct and set the new fields
$contentUpdateStruct = $contentService->newContentUpdateStruct();
$contentUpdateStruct->initialLanguageCode = 'eng-GB'; // set language for new version
$contentUpdateStruct->setField('title', $newTitle);
$contentUpdateStruct->setField('body', $newBody);

To set the new values for this version, we request a from the using the ContentUpdateStruct ContentService newContentUpdateStruc
 method. Updating the values hasn't changed: we use the method.t() setField()

$contentDraft = $contentService->updateContent($contentDraft->versionInfo,
$contentUpdateStruct);
$content = $contentService->publishVersion($contentDraft->versionInfo);

We can now use to apply our to our draft's . Publishing isContentService::updateContent() ContentUpdateStruct VersionInfo
done exactly the same way as for a new content, using .ContentService::publishVersion()

Handling translations

In the two previous examples, you have seen that we set the ContentUpdateStruct's initialLanguageCode property. To translate an object to a
new language, set the locale to a new one.

$contentUpdateStruct->initialLanguageCode = 'ger-DE';
$contentUpdateStruct->setField('title', $newtitle);
$contentUpdateStruct->setField('body', $newbody);

It is possible to create or update content in multiple languages at once. There is one restriction: only one language can be set a version's
language. This language is the one that will get a flag in the back office. However, you can set values in other languages for your attributes, using
the setField method's third argument.

// set one language for new version
$contentUpdateStruct->initialLanguageCode = 'fre-FR';

$contentUpdateStruct->setField('title', $newgermantitle, 'ger-DE');
$contentUpdateStruct->setField('body', $newgermanbody, 'ger-DE');

$contentUpdateStruct->setField('title', $newfrenchtitle);
$contentUpdateStruct->setField('body', $newfrenchbody);

Since we don't specify a locale for the last two fields, they are set for the 's , fre-FR.UpdateStruct initialLanguageCode

Creating Content containing an image

translating

update multiple languages

Full code
https://github.com/ezsystems/CookbookBundle/blob/master/Command/CreateImageCommand.php

https://github.com/ezsystems/CookbookBundle/blob/master/Command/CreateImageCommand.php

As explained above, the setField() method can accept various values: an instance of the FieldType's Value class, a primitive type, or a hash. The
last two depend on what the method is build up to handle. TextLine can, for instance, accept a simple string as an inputType::acceptValue()
value. In this example, you will see how to set an Image value.

We assume that we use the default image class. Creating our Content, using the ContentType and a ContentCreateStruct, has been covered
above, and can be found in the full code. Let's focus on how the image is provided.

$file = '/path/to/image.png';

$value = new \eZ\Publish\Core\FieldType\Image\Value(
 array(
 'path' => '/path/to/image.png',
 'fileSize' => filesize('/path/to/image.png'),
 'fileName' => basename('image.png'),
 'alternativeText' => 'My image'
)
);
$contentCreateStruct->setField('image', $value);

This time, we create our image by directly providing an object. The values are directly provided to the constructor using a hashImage\Value
with predetermined keys that depend on each Type. In this case: the path where the image can be found, its size, the file name, and an
alternative text.

Images also implement a static method that will, given a path to an image, return an object.fromString() Image\Value

$value = \eZ\Publish\Core\FieldType\Image\Value::fromString('/path/to/image.png');

But as said before, whatever you provide with is sent to the method. This method really is the entry point to thesetField() acceptValue()
input formats a FieldType accepts. In this case, you could have provided setField with either a hash, similar to the one we provided the
Image\Value constructor with, or the path to your image, as a string.

$contentCreateStruct->setField('image', '/path/to/image.png');

// or

$contentCreateStruct->setField('image', array(
 'path' => '/path/to/image.png',
 'fileSize' => filesize('/path/to/image.png'),
 'fileName' => basename('image.png'),
 'alternativeText' => 'My image'
);

Create Content with XML Text

Another very commonly used FieldType is the rich text one, .XmlText

Full code
https://github.com/ezsystems/CookbookBundle/blob/master/Command/CreateXMLContentCommand.php

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/Core/FieldType/Image/Value.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/Core/FieldType/Image/Value.html#method_fromString
https://github.com/ezsystems/CookbookBundle/blob/master/Command/CreateXMLContentCommand.php

$xmlText = <<< EOX
<?xml version='1.0' encoding='utf-8'?>
<section>
<paragraph>This is a image test</paragraph>
<paragraph><embed view='embed' size='medium' object_id='$imageId'/></paragraph>
</section>
EOX;
$contentCreateStruct->setField('body', $xmlText);

As for the last example above, we use the multiple formats accepted by , and provide our XML string as is. The only acceptedsetField()
format as of 5.0 is internal XML, the one stored in the Legacy database.

We embed an image in our XML, using the tag, providing an image Content ID as the attribute.<embed> object_id

Deleting Content

$contentService->deleteContent($contentInfo);

ContentService::deleteContent() method expects a as an argument. It will delete the given Content, all of its Locations,ContentInfo
as well as all of the Content's Locations' descendants and their associated Content. Use with caution !

working with xml text

The XSD for the internal XML representation can be found in the kernel: https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/
.Publish/Core/FieldType/XmlText/Input/Resources/schemas/ezxml.xsd

Using a custom format as input
More input formats will be added later. The API for that is actually already available: you simply need to implement the XmlText\Inpu

 interface. It contains one method, , that must return an internal XML string. Create your ownt getInternalRepresentation()
bundle, add your implementation to it, and use it in your code!

$input = new \My\XmlText\CustomInput('My custom format string');
$contentCreateStruct->setField('body', $input);

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/ContentService.html#method_deleteContent
https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Publish/Core/FieldType/XmlText/Input/Resources/schemas/ezxml.xsd
https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Publish/Core/FieldType/XmlText/Input/Resources/schemas/ezxml.xsd
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/Core/FieldType/XmlText/Input.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/Core/FieldType/XmlText/Input.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/Core/FieldType/XmlText/Input.html#method_getInternalRepresentation

	3. Managing Content

