
1.
a.
b.

2.
a.

b.

3.

How to run long-running console commands
This page describes how to execute long-running console commands, to make sure they don't run out of memory. An example is a custom import
command or the indexing command provided by the .Solr Bundle

Reducing memory usage
Process forking with Symfony

Related topics

Reducing memory usage

To avoid quickly running out of memory while executing such commands you should make sure to:

Always run in prod environment using: --env=prod
See for further information on Symfony environments.Using environments page
See for some of different features enabled in development Logging & Debug configuration environments, which by design uses
memory.

Avoid Stash using to much memory in prod:()Persistence cache
If your system is running, or you need to use cache, then disable Stash InMemory cache as it does not limit the amount of items
in cache and grows exponentially:

stash:
 caches:
 default:
 inMemory: false

Also if you use FileSystem driver, make sure is set to a low number, default should be 200 and can be loweredmemKeyLimit
like this:

stash:
 caches:
 default:
 FileSystem:
 memKeyLimit: 100

If your setup is offline and cache is cold, there is no risk of stale cache and you can actually completely disable Stash cache.
This will improve performance of import scripts:

stash:
 caches:
 default:
 drivers: [Blackhole]
 inMemory: false

For logging using monolog, if you use either the default , or handler, make sure to specify fingers_crossed buffer buffer_size to
:limit how large the buffer grows before it gets flushed

config_prod.yml (snippet, not a full example for stash config)

config_prod.yml

config_prod.yml (full example)

https://doc.ez.no/display/TECHDOC/Solr+Bundle
https://doc.ez.no/display/TECHDOC/Using+environments
https://doc.ez.no/pages/viewpage.action?pageId=30711191
https://doc.ez.no/display/TECHDOC/Persistence+cache+configuration
http://symfony.com/doc/current/cookbook/logging/monolog.html#handlers-and-channels-writing-logs-to-different-locations

3.

4.
5.

1.
a.
b.

2.
a.

b.

monolog:
 handlers:
 main:
 type: fingers_crossed
 buffer_size: 200

Run PHP without memory limits using: php -d memory_limit=-1 app/console <command>
Disable when running the command, this will cause php to use much more memory.xdebug (PHP extension to debug/profile php use)

Process forking with Symfony

The recommended way to completely avoid "memory leaks" in PHP in the first place is to use processes, and for console scripts this is typically
done using process forking which is quite easy to do with Symfony.

The things you will need to do:

Change your command so it supports taking slice parameters, like for instance a batch size and a child-offset parameter.
If defined, child-offset parameter denotes if a process is child, this could have been accomplished with two commands as well.
If not defined, it is master process which will execute the processes until nothing is left to process.

Change the command so that the master process takes care of forking child processes in slices.
For execution in-order, used to fork out solr indexing after installation to avoid cacheyou may look to our platform installer code
issues.
For parallel execution of the slices, .see Symfony doc for further instruction

Related topics

Using environments
Symfony Process Component [symfony.com]
Contribution Tutorials

config_prod.yml (snippet, not a full example for monolog config)

Note: Memory will still grow
Even when everything is configured like described above, memory will grow for each iteration of indexing/inserting a content item with
at least per iteration after the initial first 100 rounds. This is expected behavior; to be able to handle more iterations you will have to1kb
do one or several of the following:

Change the import/index script in question to to avoid the issue.use process forking
Upgrade PHP: newer versions of PHP are typically more memory-efficient.
Run the console command on a machine with more memory (RAM).

https://github.com/ezsystems/ezpublish-kernel/blob/6.2/eZ/Bundle/PlatformInstallerBundle/src/Command/InstallPlatformCommand.php#L230
http://symfony.com/doc/current/components/process.html#process-signals
https://doc.ez.no/display/TECHDOC/Using+environments
http://symfony.com/doc/current/components/process.html
https://doc.ez.no/display/TECHDOC/Contribution+Tutorials

	How to run long-running console commands

