
Development Guidelines
These are the development/coding guidelines for eZ Publish 5.x kernel, they are the same if you intend to write Bundles, hack on eZ Publish itself
or create new functionality for or on top of eZ Publish.

Like most guidelines these aims to improve security, maintainability, performance and readability of our software. They followdevelopment
industry standards but sometimes extend them to cater specifically to our needs for eZ Publish ecosystem. The next sections will cover all
relevant technologies from a high level point of view.

HTTP
REST
UI

WEB Forms/Ajax
HTML/Templates
Admin

PHP
Public API
Command line

Data & Databases
Sessions
Transactions
Limitations in the SQL dialect supported

HTTP

eZ Publish is a web software that is reached via HTTP in most cases, out of the box in eZ Publish 5.x kernel this is specifically: web (usually
HTML) or REST.

We aim to follow the stable HTTP specification, and industry best practice:latest

Expose our data in a RESTful way
GET, HEAD, OPTIONS & TRACE methods are (otherwise known as), as in: should never cause changes tosafe nullipotent
resources (note: things like writing a line in a log file are not considered resource changes)
PUT & DELETE methods are , as in multiple identical requests should all have the same result as a single requestidempotent
GET & HEAD methods should be both on client side, server-side and proxies between, as further defined in the HTTPcacheable
specification
As PUT is for replacing a resource, we should use in cases where only partial replacement is intendedPATCH

Authenticated traffic
Should use HTTPS

Session based traffic
Should follow recommendations for Authenticated traffic
Should use a per user session token on all requests using un-safe HTTP methods (POST, PUT, DELETE, PATCH, ...)CSRF
Should expire session id, session data and CSRF token on login, logout and session time out, except:

On login session data from previous session id is moved to new session id, keeping for instance shopping basket on
login

Should avoid timing attacks by using a random amount of time for login operation
Should never use Session id in URI's. And this feature ("SID") must always be disabled on production servers

Sessions
Should not be used to store large amounts of data; store data in database and id's in session if needed
Should not store critical data: if user deletes his cookies or closes his browser session data is lost
Should use an ID generated with enough randomness to prevent prediction or brute-force attacks

Cookies (especially session cookies)
Should never store sensitive data in cookies (only exception is session id in session cookie)
Should always set to avoid when on shared domain.Full domain cross-subdomain cooking
Should set flag to reduce risk of attacks such as and HttpOnly cross-site cooking cross-site scripting
Should set if HTTPS is used (as recommended above)Secure flag
Must never exceed 4kb

Headers
Should never include input data from user input or data from database without sanitizing it

Redirects
Should never take url from user input (example: POST parameter), instead allow identifiers instead that are understood by the
backend

User input
Should always be validated, sanitized, casted and filtered to avoid & attacksXSS clickjacking

NB: this includes variables in the php supervariable as well (e.g. hostname should not be trusted)$_SERVER
User file uploads

Should follow recommendations for "User input" to validate file name
Should place uploaded files in a non public folder to avoid access to execute uploaded file or in case of assets white list the type
Should be appropriately limited in size to avoid DOS attacks on disk space, cpu usage by antivirus tool etc...

http://trac.tools.ietf.org/wg/httpbis/trac/wiki#HTTP1.1Deliverables
http://tools.ietf.org/html/draft-ietf-httpbis-p2-semantics-21#section-5.2.1
http://en.wiktionary.org/wiki/nullipotent
http://tools.ietf.org/html/draft-ietf-httpbis-p2-semantics-21#section-5.2.2
http://tools.ietf.org/html/draft-ietf-httpbis-p2-semantics-21#section-5.2.3
http://tools.ietf.org/html/draft-ietf-httpbis-p6-cache-21
http://tools.ietf.org/html/rfc5789
http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Session_fixation#Attacks_using_cross-subdomain_cooking
http://en.wikipedia.org/wiki/Session_fixation#Attacks_using_cross-site_cooking
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Clickjacking

File downloads
Should not rely on user provided file path for non public files, instead use a synthetic id

Admin operations
May be placed on a different (sub)domain then the front end website to avoid session stealing across front and backend.

Fully support being placed behind a reverse proxy like Varnish

REST

For now see the living in our git repository for further details.REST v2 specification

UI

eZ Publish is often used as a web content management software, so we always strive to use the HTML/CSS/EcmaScript specifications correctly,
and keep new releases up to date on new revisions of those. We furthermore always try to make sure our software gracefully degrades making
sure it is useful even on older or less capable web clients (browsers), the industry terms for this approach are:

Progressive enhancement
Unobtrusive JavaScript
Responsive Design

All these terms in general recommends aiming for the minimum standard first, and enhance with additional features/styling if the client is capable
of doing so. In essence this allows eZ Publish to be "Mobile first" if the design allows for it, which is recommended. But eZ Publish should always
also be fully capable of having different sets of web presentations for different devices using one or several sets of "SiteAccess" (see eZ Publish
terms) matching rules for the domain, port or URI, so any kind of device detection can be used together with eZ Publish, making it fully possible to
write for instance based websites and interfaces on top of eZ Publish.WAP

WEB Forms/Ajax

As stated in the HTTP section, all unsafe requests to the web server should have a CSRF token to protect against attacks; this includes web
forms and ajax requests that don't use the GET http method. As also stated in the HTTP section and further defined in the PHP section, User
input should always be validated to avoid XSS issues.

HTML/Templates

All data that comes from backend and in return comes from user input should always be escaped, in case of Twig templates this done by default,
but in case of PHP templates, Ajax and other not Twig based output this must be handled manually.

Output escaping must be properly executed according to the desired format, eg. javascript vs. html, but also taking into account the correct
character set (see eg. output escaping fallacy when not specifying charset encoding in)htmlspecialchars

Admin

Admin operations that can have a severe impact on the web applications should require providing password and require it again after some time
has gone, normally 10 - 20 minutes, on all session based interfaces.

<TODO: Add more coding guidelines for HTML (XHTML5), Javascript, CSS and templates>

PHP

For now see our comprehensive coding standard & guidelines on github.wiki page

Public API

The PHP Public API provided in eZ Publish 5.0 is in most cases in charge of checking permissions to data for you, but some API's are not
documented to throw UnauthorizedException, which means that it is the consumer of the API's who is responsible for checking permissions.

The following example shows how this is done in the case of loading users:

eZ Coding Standards Tools
See also repository to get the configuration files for your favorite tools.eZ Coding Standards Tools

https://www.varnish-cache.org/
https://github.com/ezsystems/ezp-next/blob/master/doc/specifications/rest/REST-API-V2.rst
http://en.wikipedia.org/wiki/Progressive_enhancement
http://en.wikipedia.org/wiki/Unobtrusive_JavaScript
http://en.wikipedia.org/wiki/Responsive_Web_Design
http://en.wikipedia.org/wiki/Wireless_Application_Protocol
http://www.php.net/htmlspecialchars
https://github.com/ezsystems/ezpublish-kernel/wiki/codingstandards
http://eZ%20Coding%20Standard%20tools

// Get a user
$userId = (int)$params['id'];
$userService = $repository->getUserService();
$user = $userService->loadUser($userId);

// Now check that current user has access to read this user
if (!$repository->canUser('content', 'read', $user))
{
 // Generates message: User does not have access to 'content' 'read' with id '10'
 throw new \eZ\Publish\Core\Base\Exceptions\UnauthorizedException('content',
'read', array('id' => $userId));
}

Command line

Output must always be escaped when displaying data from the database.

<TODO: Expand on how best practice is to handle user input in eZ Publish 5 to avoid XSS issues>

Data & Databases

Values coming from variables should always be appropriately quoted or binded in SQL statements
The SQL statements used should never be created by hand with one version per supported database, as this increases both the
maintenance load and the chances for security-related problems
Usage of temporary tables is discouraged, as their behaviour is very different on different databases. Subselects should be prefererred
(esp. since recent mysql versions have much better support for them)
Full table locking is discouraged

<TODO: guidelines for how data should be stored for maximum portability (hint: XML & abstraction)>

Sessions

Business logic should not depend on database connections being either persistent or not persistent
The connection to the database should always be opened as late as possible during page execution. Ideally, to improve scalability, a web
page executing no queries should not connect to the db at all (note that closing the db connection as soon as possible is a tricky problem,
as we expect to support persistent db connections as well for absolute best performances)
The same principle applies to configurations where a master/slave db setup is in use: the chance for a failure due to a database
malfunction should not increase with the number of db servers at play, but actually decrease
It is recommended to avoid as much as possible statements which alter the current session, as they slow down the application, are brittle
and hard to debug.
Point in case; if a db session locks a table then is abruptly terminated, the table might stay locked for a long time

Transactions

Transactions should always be used to wrap sql statements which affect data in multiple tables: either all data changes go through or
none of them
Transactions are prone to locking issues, so the code executed within a transaction should be limited to the minimum necessary amount
(ex. clearing caches should be done after the transaction is committed)
When using transactions, always consider side effects on external system, such as on-disk storage. F.e. is a transaction relative to
creating an image variation is rolled back, the corresponding file should not be left on disk
Nested transactions are supported in the following way:

a transaction within another one will not commit when requested, only the outhermost transaction will commit
a transaction within another one will roll back all the way to the start of the outhermost transaction when requested
as a result a transaction shall never be rolled back just as a means of cancelling its work - the side effect might be of cancelling
other work which had just been done previously

loadUser()

Limitations in the SQL dialect supported

Striving to support Mysql 5, PostgreSQL xx and Oracle 10, the following limitations apply:

Tables, columns and other db objects should not use names longer than 30 chars
Varchar columns with a definition of are discourageddefault "" not null
For SELECTs, offset and limit have to be handled by the php layer, not hardcoded in the sql
Never treat a NULL varchar value as semantically different from an empty string value
The select list of a query cannot contain the same field multiple times
For GROUP BY statements, all fields in the group by clause should be in the select list as well
For SELECTs, usage of the AS token is allowed in the select list, but not in the list of tables
Do not put quotes around numeric values (use proper casting/escaping to avoid SQL injection)
<TODO: finish sql guidelines>

	Development Guidelines

