Siteaccess Matching

Configuration

Available matchers

Compound siteaccess matcher
Matching by request header
Matching by environment variable
URILexer and semanticPathinfo

Siteaccess matching is done through eZ\Publish\MVC\SiteAccess\Matcher objects. You can configure this matching and even develop custom
matchers.

Configuration

You can configure siteaccess matching in your main ezpublish/config/ezpublish.yml :

ezpublish.yml

ezpubl i sh:
si teaccess
default _siteaccess: ezdenp_site
list:
- ezdeno_site
- eng
- fre
- fr_eng
- ezdenp_site_admin
gr oups:
ezdeno_site_group
- ezdenp_site
- eng
- fre
- fr_eng
- ezdeno_site_admn
mat ch:
Map\ URI
ezdeno_site: ezdeno_site
fre: fre

ezdeno_site_adm n: ezdeno_site_admn

You need to set several parameters:

® ezpublish.siteaccess.default_siteaccess
® ezpublish.siteaccess.list

® (optional) ezpublish.siteaccess.groups

® ezpublish.siteaccess.match

ezpublish.siteaccess.default_siteaccess is the default siteaccess that will be used if matching was not successful. This ensures that a
siteaccess is always defined.

ezpublish.siteaccess.list is the list of all available siteaccesses in your website.

(optional) ezpublish.siteaccess.groups defines which groups siteaccesses are member of. This is useful when you want to mutualize settings
between several siteaccesses and avoid config duplication. Siteaccess groups are considered as regular siteaccesses as far as configuration is
concerned.

A siteaccess can be part of several groups.

A siteaccess configuration has always precedence on the group configuration.

ezpublish.siteaccess.match holds the matching configuration. It consists in a hash where the key is the name of
the matcher class. If the matcher class doesn't start with a \, it will be considered relative to eZ\ Publ i sh\ M\WC\ Si t
eAccess\ Mat cher (e.g. Map\ Host will refer to eZ\ Publ i sh\ M/CQ\ Si t eAccess\ Mat cher\ Map\ Host)

Every custom matcher can be specified with a fully qualified class name (e.g. \ My\ Si t eAccess\ Mat cher) or by a service
identifier prefixed by @ (e.g. @ry_mat cher _servi ce).

® |n the case of a fully qualified class name, the matching configuration will be passed in the constructor.
® |n the case of a service, it must implement eZ\ Bundl e\ EzPubl i shCor eBundl e\ Si t eAccess\ Mat cher . The matching
configuration will be passed to set Mat chi ngConfi guration().

Make sure to type matcher in correct case, if wrong case like "Uri" instead of "URI" it will happily work on systems like Mac OS X
because of case in sensitive file system, while it will fail when you deploy it to a linux server. This is a known artifact of PSR-0
autoloading of PHP classes.

Available matchers

Name Description Configuration Example
URI El enent Maps a URI The element number you want to match (starting from 1). URI: / ezdeno_si t e/ f oo/ bar
elementto a
?';‘?aFCtesS-d ot bl sh Element number: 1
is is the defau ezpu 1 sh: . .
matcher used puv’ ‘ _ Matched siteaccess: ezdemo_site
when choosing siteaccess:
URI matching in mat ch: Element number: 2
setup wizard. URI El ement: 1 Matched siteaccess:

ezdemo_site_foo

Important: When using a value > 1,
it will concatenate the elements with _

URI Text Matches URI The prefix and/or suffix (none are required) URI: / f oot est bar / ny/ cont ent
using pre and/or p
ost sub-strings Prefix: foo
in the first URI ezpubl i sh: Suffix: bar
segment siteaccess: Matched siteaccess: test
mat ch:
URI Text :

prefix: foo
suffix: bar

Host El enent Maps an element The element number you want to match (starting from 1). Host name: www. exanpl e. com
in the host name
to a siteaccess. Element number: 2
ezpubl i sh: Matched siteaccess: example

si t eaccess:
mat ch:
Host El enent: 2

http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/psr/psr-0/

Host Text Matches a The prefix and/or suffix (none are required) Host name: ww. f 00. com
siteaccess in the

host name, Prefix: www.
using pre and/or p ezpubl i sh: Suffix: .com
-stri . Match i : f
ost sub-strings. sit eaccess: Matched siteaccess: foo
mat ch:
Host Text :
prefix: ww.
suffix: .com
Map\ Host Maps a host name A hash map of host/siteaccess Map:
to a siteaccess.
* www.foo.com => foo_front
ezpubl i sh: ¢ admin.foo.com => foo_admin
si teaccess: Host name: www.example.com
mat ch: Matched si 00 1
atched siteaccess: foo_front
Map\ Host : : -
www. f 00. com
foo_front
adm f 0o. com
foo_adm n
www. bar -stuff.fr:
bar _front
adm bar-stuff.fr:
bar _adm n
Map\ URI Maps a URI to a A hash map of URl/siteaccess URI: / soret hi ng/ my/ cont ent
siteaccess
Map:
ezpubl i sh:))
. . ® something => ezdemo_site
siteaccess: ® foobar => ezdemo_site_admin
mat ch: hed si g]
Map\ UR! : Matched siteaccess: ezdemo_site
sonet hi ng
ezdenp_site
f oobar:
ezdeno_site_adm n
Map\ Por t Maps a port to a A has map of Port/siteaccess URL: http://ezpublish. dev: 8080/ ny/ co
siteaccess nt ent
ezpubl i sh: Map:
Si teaccess: * 80: foo
mat ch: ® 8080: bar
Mat ch\ Port:

Matched siteaccess: bar

80: foo
8080: bar

Regex\ Host Matches against a The regexp to match against Host name: exanpl e_sa

regexp and and the captured element to use

extract a portion regex: *(\\ w+) _sa$

of it itemNumber: 1

ezpubl i sh:]
. Matched siteaccess: example
Sl t eaccess:
mat ch:
Regex\ Host :
regex:

"A\V\wH_sa) $"
Default is 1

i temNunber: 1
Regex\ URI Matches against a The regexp to match against URI: / f oot est bar / soret hi ng
regexp and and the captured element to use
extract a portion regex: Mfoo(\w+)bar
of it itemNumber: 1
ezpubl i sh: i
. Matched siteaccess: test
Sl t eaccess:
mat ch:
Regex\ URI :
regex:

"N foo(\\wt)bar”
Default is 1
itemNunber: 1

Compound siteaccess matcher

The Compound siteaccess matcher allows to combine several matchers together:

" http://example.com/en matches site_en (match on host=example.com and URIElement(1)=en)
" http://example.com/fr matches site_fr (match on host=example.com and URIElement(1)=fr)
" http://admin.example.com matches site_admin (match on host=admin.example.com)

Compound matchers cover the legacy hOSt_UI’i matching feature.
They are based on logical combinations, or/and, using logical compound matchers:

® Conpound\ Logi cal And
® Conpound\ Logi cal Or

Each compound matcher will specify two or more sub-matchers. A rule will match if all the matchers, combined with the logical matcher, are
positive. The example above would have used Map\ Host and Map\ Uri ., combined with a Logi cal And. When both the URI and host match, the

siteaccess configured with "match" is used.

http://example.com/en
http://example.com/fr
http://admin.example.com

ezpublish.yml

ezpubl i sh:
si teaccess:
mat ch:

Conpound\ Logi cal And:
Nested nmatchers, with their configuration.
No need to precise their matching values (true will suffice).
site_en:
mat chers:
Map\ URI :
en: true
Map\ Host :
exanpl e.com true
match: site_en
site_fr:
mat chers:
Map\ URI :
fr: true
Map\ Host :
exanpl e.com true
match: site fr
Map\ Host :
admi n. exanpl e.com site_adnin

Matching by request header

It is possible to define which siteaccess to use by setting a X-Siteaccess header in your request. This can be useful for REST requests.

In such case, X-Siteaccess must be the siteaccess name (e.g. ezdemo_site).

Matching by environment variable

It is also possible to define which siteaccess to use directly via an EZPUBLISH_SITEACCESS environment variable.
This is recommended if you want to get performance gain since no matching logic is done in this case.

You can define this environment variable directly from your web server configuration:

Apache VirtualHost example

This configuration assunes that nod_env is activated
<Virtual Host *:80>
Docunent Root "/ path/to/ezpublish5/ web/fol der"
Server Name exanpl e. com
Server Al i as ww. exanpl e. com
Set Env EZPUBLI SH_SI TEACCESS ezdenp_site
</ Vi rtual Host >

This can also be done via PHP-FPM configuration file, if you use it. See PHP-FPM documentation for more information.

http://php.net/manual/en/install.fpm.configuration.php#example-60

Note about precedence
The precedence order for siteaccess matching is the following (the first matched wins):

1. Request header
2. Environment variable
3. Configured matchers

URILexer and semanticPathinfo

In some cases, after matching a siteaccess, it is necessary to modify the original request URI. This is for example needed with URI-based
matchers since the siteaccess is contained in the original URI and it is not part of the route itself.

The problem is addressed by analyzing this URI and by modifying it when needed through the URILexer interface.

URILexer interface
/**
* Interface for SiteAccess matchers that need to alter the URI after nmatching.
* This is useful when you have the siteaccess in the UR |ike
"/ <siteaccessNanme>/ ny/ awesone/ uri "
*/
interface URI Lexer

{

/**

* Anal yses $uri and renoves the siteaccess part, if needed.

*

* @aramstring $uri The original UR

* @eturn string The nodified URI

*/

public function anal yseURI ($uri);

/**

* Anal yses $linkUi when generating a link to a route, in order to have the
siteaccess part back in the URI.

*

* @aram string $linkUri

* @eturn string The nodified [ink URI

*/

public function anal yseLink($linkUri);

Once modified, the URI is stored in the semanticPathinfo request attribute, and the original pathinfo is not modified.

	Siteaccess Matching

