
Getting started with the Public API
In this chapter, we will see two ways of customizing eZ Platform: command line scripts (for import
scripts, for instance), and custom controllers.

Symfony bundle

In order to test and use Public API code, you will need to build a custom bundle. Bundles are
Symfony's extensions, and are therefore also used to extend eZ Platform. Symfony 2 provides
code generation tools that will let you create your own bundle and get started in a few minutes.

In this chapter, we will show how to create a custom bundle, and implement both a command line
script and a custom route with its own controller action and view. All shell commands assume that
you use some Linux shell, but those commands would of course also work on Windows systems.

Generating a new bundle

First, change the directory to your eZ Platform root.

$ cd /path/to/ezplatform

Then use the app/console application with the command to start the bundlegenerate:bundle
generation wizard.

Let's follow the instructions provided by the wizard. Our objective is to create a bundle named EzSy
, located in the directory. stems/Bundles/CookBookBundle src

$ php app/console generate:bundle

The wizard will first ask about our bundle's namespace. Each bundle's namespace should feature a
vendor name (in our own case:), optionally followed by a sub-namespace (we couldEzSystems
have chosen to use), and end with the actual bundle's name, suffixed with Bundle: Bundle Cookb

.ookBundle

In this topic:

Symfony bundle
Generating a new
bundle
Creating a command
line script in your
bundle
Creating a custom
route with a
controller action

https://github.com/docb22/ez-publish-cookbook/tree/master/EzSystems/CookBookBundle/Command
https://github.com/docb22/ez-publish-cookbook/tree/master/EzSystems/CookBookBundle/Command

Your application code must be written in bundles. This
command helps you generate them easily.

Each bundle is hosted under a namespace (like
Acme/Bundle/BlogBundle).

The namespace should begin with a "vendor" name like
your company name, your project name, or your client
name, followed by one or more optional category
sub-namespaces, and it should end with the bundle name
itself (which must have Bundle as a suffix).

See
http://symfony.com/doc/current/cookbook/bundles/best_pra
ctices.html#index-1 for more details on bundle naming
conventions.

Use / instead of \ for the namespace delimiter to avoid
any problem.

Bundle namespace: EzSystems/CookbookBundle

You will then be asked about the Bundle's name, used to reference your bundle in your code. We
can go with the default, . Just hit Enter to accept the default.EzSystemsCookbookBundle

In your code, a bundle is often referenced by its name.
It can be the concatenation of all namespace parts but
it's really up to you to come up with a unique name (a
good practice is to start with the vendor name).

Based on the namespace, we suggest
EzSystemsCookbookBundle.

Bundle name [EzSystemsCookbookBundle]:

The next question is your bundle's location. By default, the script offers to place it in the folder.src
This is perfectly acceptable unless you have a good reason to place it somewhere else. Just hit
Enter to accept the default.

The bundle can be generated anywhere. The suggested
default directory uses the standard conventions.

Target directory [/path/to/ezpublish5/src]:

Next, you need to choose the generated configuration's format, out of YAML, XML, PHP or
annotations. We mostly use yaml in eZ Platform, and we will use it in this cookbook. Enter 'yml',

Bundle namespace

Bundle name

Bundle directory

and hit Enter.

Determine the format to use for the generated
configuration.

Configuration format (yml, xml, php, or annotation)
[annotation]: yml

The last choice is to generate code snippets demonstrating the Symfony directory structure. If
you're learning Symfony, it is a good idea to accept, as it will create a controller, yaml files, etc.

To help you get started faster, the command can generate
some code snippets for you.

Do you want to generate the whole directory structure
[no]? yes

The generator will then summarize the previous choices, and ask for confirmation. Hit Enter to
confirm.

You are going to generate a
"EzSystems\Bundle\CookbookBundle\EzSystemsCookbookBundle
" bundle in "/path/to/ezpublish5/src/" using the "yml"
format.

Do you confirm generation [yes]? yes

The wizard will generate the bundle, check autoloading, and ask about the activation of your
bundle. Hit Enter in the answer to both questions to have your bundle automatically added to your
Kernel () and routes from your bundle added to the existing routes (app/AppKernel.php app/co

).nfig/routing.yml

Bundle generation

Generating the bundle code: OK
Checking that the bundle is autoloaded: OK
Confirm automatic update of your Kernel [yes]?
Enabling the bundle inside the Kernel: OK
Confirm automatic update of the Routing [yes]?
Importing the bundle routing resource: OK

 You can now start using the generated code!

Configuration format

Generate snippets & directory structure

Summary and confirmation

Activation and generation

Your bundle should be generated and activated. Let's now see how you can interact with the Public
API by creating a command line script, and a custom controller route and action.

Creating a command line script in your bundle

Writing a command line script with Symfony 2 is easy. The framework and its bundles shipvery
with a few scripts. They are all started using . You can get thephp app/console <command>
complete list of existing command line scripts by executing from the eZphp app/console list
Platform root.

In this chapter, we will create a new command, identified as , thatezpublish:cookbook:hello
takes an optional name argument, and greets that name. To do so, we need one thing: a class with
a name ending with "Command" that extends Symfony\Component\Console\Command\Comma

. Note that in our case, we use instead of , since we neednd ContainerAwareCommand Command
the dependency injection container to interact with the Public API. In your bundle's directory (src/

), create a new directory named , and in this directory, aEzSystems/CookbookBundle Command
new file named .HelloCommand.php

Add this code to the file:

<?php
namespace EzSystems\CookBookBundle\Command;

use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Output\OutputInterface;
use Symfony\Component\Console\Input\InputArgument;

class HelloCommand extends
\Symfony\Bundle\FrameworkBundle\Command\ContainerAwareCo
mmand
{
 /**
 * Configures the command
 */
 protected function configure()
 {
 }

 /**
 * Executes the command
 * @param InputInterface $input
 * @param OutputInterface $output
 */
 protected function execute(InputInterface $input,
OutputInterface $output)
 {
 }
}

This is the skeleton for a command line script.

One class with a name ending with "Command" (), extends HelloCommand Symfony\Bundle\Fr
, and is part of our bundle's Command namespace. It hasameworkBundle\Command\Command

two methods: , and . We also import several classes & interfaces withconfigure() execute()
the use keyword. The first two, and are used to 'typehint'InputInterface OutputInterface
the objects that will allow us to provide input & output management in our script.

Configure will be used to set your command's name, as well as its options and arguments. Exec
 will contain the actual implementation of your command. Let's start by creating the ute configur

HelloCommand.php

 method.e()

protected function configure()
{
 $this->setName('ezpublish:cookbook:hello');
 $this->setDefinition(
 array(
 new InputArgument('name',
InputArgument::OPTIONAL, 'An argument')
)
);
}

First, we use to set our command's name to " ". WesetName() ezpublish:cookbook:hello
then use to add an argument, named , to our command.setDefinition() name

You can read more about argument definitions and further options in the Symfony 2 Console
. Once this is done, if you run , you should see documentation php app/console list ezpubli

 listed in the available commands. If you run it, it will however still dosh:cookbook:hello
nothing.

Let's just add something very simple to our method so that our command actuallyexecute()
does something.

protected function execute(InputInterface $input,
OutputInterface $output)
{
 // fetch the input argument
 if (!$name = $input->getArgument('name'))
 {
 $name = "World";
 }
 $output->writeln("Hello $name");
}

You can now run the command from the eZ Platform root.

$ php app/console ezpublish:cookbook:hello world
Hello world

Creating a custom route with a controller action

In this short chapter, we will see how to create a new route that will catch a custom URL and
execute a controller action. We want to create a new route, , that displays a/cookbook/test
simple 'Hello world' message. This tutorial is a simplified version of the official one that can be
found on .http://symfony.com/doc/current/book/controller.html

During our bundle's generation, we have chosen to generate the bundle with default code snippets.
Fortunately, almost everything we need is part of those snippets. We just need to do some editing,
in particular in two locations: src/EzSystems/Resources/CookbookBundle/config/routi

TestCommand::configure()

TestCommand::execute()

Hello world

http://symfony.com/doc/2.0/components/console/introduction.html
http://symfony.com/doc/2.0/components/console/introduction.html
http://symfony.com/doc/current/book/controller.html

 and .ng.yml src/EzSystems/CookbookBundle/Controllers/DefaultController.php
The first one will be used to configure our route () as well as the controller action/cookbook/test
the route should execute, while the latter will contain the actual action's code.

routing.yml

This is the file where we define our action's URL matching. The generated file contains this YAML
block:

ez_systems_cookbook_homepage:
 path: /hello/{name}
 defaults: { _controller:
EzSystemsCookbookBundle:Default:index }

We can safely remove this default code, and replace it with this:

ezsystems_cookbook_hello:
 path: /cookbook/hello/{name}
 defaults: { _controller:
EzSystemsCookbookBundle:Default:hello }

We define a route that matches the URI /cookbook/* and executes the action in the Defaulthello
controller of our bundle. The next step is to create this method in the controller.

DefaultController.php

This controller was generated by the bundle generator. It contains one method, ,helloAction()
that matched the YAML configuration we have changed in the previous part. Let's just rename the

 method so that we end up with this code.indexAction()

public function helloAction($name)
{
 $response = new
\Symfony\Component\HttpFoundation\Response;
 $response->setContent("Hello $name");
 return $response;
}

We won't go into details about controllers in this cookbook, but let's walk through the code a
bit. This method receives the parameter defined in . It is called "name" in the routerouting.yml
definition, and must be called $name in the matching action. Since the action is named "hello" in ro

, the expected method name is .uting.yml helloAction

Controller actions return a Response object that will contain the response's content, themust
headers, and various optional properties that affect the action's behavior. In our case, we simply
set the content, using , to "Hello $name". GosetContent()
to http://ezplatform/cookbook/hello/YourName, and you should get "Hello YourName".

Generated routing.yml

Edited routing.yml

DefaultController::helloAction()

The custom EzPublishCoreBundle Controller

With both command line scripts and HTTP routes, you have the basics you need to start writing
Public API code.

For convenience, a custom controller is available at eZ\Bundle\EzPublishCoreBundle\Co
. It gives you with a few commodity methods:ntroller

getRepository()
Returns the Public API repository that gives you access to the various services
through , and so on; getContentService() getLocationService()
getLegacyKernel()
Returns an instance of the that you caneZ\Publish\Core\MVC\Legacy\Kernel
use to interact with the Legacy eZ Platform kernel
getConfigResolver()
Returns the that gives you access to configuration data.ConfigResolver

You are encouraged to use it for your custom controllers that interact with eZ Platform.

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Bundle/EzPublishCoreBundle/Controller.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Bundle/EzPublishCoreBundle/Controller.html
http://apidoc.ez.no/doxygen/trunk/NS/html/classeZ_1_1Publish_1_1Core_1_1MVC_1_1Legacy_1_1Kernel.html
http://apidoc.ez.no/doxygen/trunk/NS/html/classeZ_1_1Bundle_1_1EzPublishCoreBundle_1_1DependencyInjection_1_1Configuration_1_1ConfigResolver.html

	Getting started with the Public API

