Browsing, finding, viewing

We will start by going through the various ways to find and retrieve content from eZ Platform using
the API. While this will be covered in further dedicated documentation, it is necessary to explain a
few basic concepts of the Public API. In the following recipes, you will learn about the general
principles of the API as they are introduced in individual recipes.

Displaying values from a Content item

In this recipe, we will see how to fetch a Content item from the repository, and obtain its Field's
content.

Let's first see the full code. You can see the Command line version at https://github.com/ezsystems
/CookbookBundle/blob/master/Command/ViewContentCommand.php.

In this topic:

® Displaying values from a
Content item
® Traversing a Location

subtree
® Viewing
[]

® Search
[J

Content Metadata
Setting the
Repository User
The Contentinfo
Value Object
Locations
Relations
ContentInfo
properties
Owning user
Section
Versions

Performing a simple
full text search
Retrieving Sort
Clauses for parent
location
Performing an
advanced search
Performing a fetch
like search
Performing a
Faceted Search
Performing a pure
search count

https://github.com/ezsystems/CookbookBundle/blob/master/Command/ViewContentCommand.php
https://github.com/ezsystems/CookbookBundle/blob/master/Command/ViewContentCommand.php

Viewing content

$repository = $this->get Contai ner()->get(
"ezpublish.api.repository');

$content Servi ce = $reposi tory->get Cont ent Servi ce();
$cont ent TypeServi ce =

$reposi tory->get Cont ent TypeServi ce();

$fi el dTypeServi ce = $repository->getFi el dTypeService();

try
{
$cont ent = $cont ent Servi ce->l oadContent(66);
$cont ent Type = $cont ent TypeSer vi ce- >l oadCont ent Type(
$cont ent - >cont ent | nf o- >cont ent Typel d)
/'l iterate over the field definitions of the content
type and print out each field' s identifier and val ue
foreach($content Type->fiel dDefinitions as
$fieldDefinition)
{
$out put ->write($fieldDefinition->identifier
")
$fi el dType = $fi el dTypeServi ce->get Fi el dType(
$fiel dDefinition->fieldTypeldentifier);
$field = $content->get Fi el d(
$fieldDefinition->identifier);

/1 W use the Field s toHash() nmethod to get readabl e
content out of the Field
$val ueHash = $fiel dType- >t oHash($fi el d->val ue

)
$out put->writel n($val ueHash);

}
}
cat ch(
\ eZ\ Publ i sh\ API \ Reposi t or y\ Except i ons\ Not FoundExcepti on
$e)
{

/1 if the id is not found

$out put->writeln("No content with id $contentld");
}
cat ch(
\ eZ\ Publ i sh\ APl \ Reposi t or y\ Excepti ons\ Unaut hori zedExcept
ion $e)
{

/1 not allowed to read this content
$out put->writel n("Anonynous users are not all owed
to read content with id $contentld");

}

Let's analyze this code block by block.

$repository = $thi s->get Cont ai ner () - >get (

"ezpubl i sh.api.repository');

$cont ent Servi ce = $reposi tory->get Content Servi ce();
$cont ent TypeServi ce =

$reposi tory->get Cont ent TypeServi ce();

$fi el dTypeServi ce = $repository->getFi el dTypeService();

This is the initialization part. As explained above, everything in the Public API goes through the
repository via dedicated services. We get the repository from the service container, using the
method get () of our container, obtained via $t hi s- >get Cont ai ner () . Using our $r eposi t or
y variable, we fetch the two services we will need using get Cont ent Ser vi ce() and get Fi el dT
ypeService() .

try
{
/'l iterate over the field definitions of the content
type and print out each field' s identifier and val ue
$content = $content Servi ce->| oadContent(66);

Everything starting from line 5 is about getting our Content and iterating over its Fields. You can
see that the whole logic is part of a t ry/ cat ch block. Since the Public API uses Exceptions for
error handling, this is strongly encouraged, as it will allow you to conditionally catch the various
errors that may happen. We will cover the exceptions we expect in a later paragraph.

The first thing we do is use the Content Service to load a Content item using its ID, 66: $cont ent S
ervi ce- >l oadContent (66).Asyou can see on the API doc page, this method expects a
Content ID, and returns a Content Value Object.

foreach($content Type->fiel dDefinitions as
$fieldDefinition)

{
/'l ignore ezpage
if($fieldDefinition->fieldTypeldentifier ==
' ezpage')
conti nue
$out put->write($fieldDefinition->identifier
)

$fiel dType = $fi el dTypeServi ce- >get Fi el dType(
$fiel dDefinition->fieldTypeldentifier);

$fi el dval ue = $cont ent - >get Fi el dVval ue(
$fieldDefinition->identifier);

$val ueHash = $fi el dType->t oHash($fi el dval ue);

$out put->writel n($val ueHash);

This block is the one that actually displays the value.

It iterates over the Content item's Fields using the Content Type's FieldDefinitions ($cont ent Type
->fi el dDefini tions).

For each Field Definition, we start by displaying its identifier ($f i el dDef i ni ti on->i dentifi er
). We then get the Field Type instance using the Field Type Service ($f i el dTypeSer vi ce- >get
Fi el dType($fiel dDefinition->fieldTypeldentifier)). This method expects the
requested Field Type's identifier, as a string (ezstring, ezxmltext, etc.), and returns an eZ\ Publ i s
h\ API \ Reposi t ory\ Fi el dType object.

The Field Value object is obtained using the get Fi el dVal ue() method of the Content Value
Object which we obtained using Cont ent Ser vi ce: : | oadCont ent ().

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/ContentService.html#method_loadContent
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Content.html

Using the Field Type object, we can convert the Field Value to a hash using the t oHash() method
, provided by every Field Type. This method returns a primitive type (string, hash) out of a Field
instance.

With this example, you should get a first idea on how you interact with the API. Everything is done
through services, each service being responsible for a specific part of the repository (Content, Field
Type, etc.).

Loading Content in different languages

Since we didn't specify any language code, our Field object is returned in the given
Content item's main language. If you'd prefer it to fall back to the SiteAccess
language(s), then take advantage of TranslationHelpers. Or if you want to use an
altogether different language, you can specify a language code in the get Fi el d() call:

$cont ent - >get Fi el dVval ue(
$fieldDefinition->identifier, '"fre-FR)

Exceptions handling

catch (
\ eZ\ Publ i sh\ API \ Reposi t or y\ Except i ons\ Not FoundExcepti on
$e)
{

$output->writeln("<error>No content with id
$contentld found</error>");
}
catch (
\ eZ\ Publ i sh\ APl \ Reposi t or y\ Except i ons\ Unaut hori zedExcept
ion $e)
{

$out put->writel n("<error>Perm ssion denied on
content with id $contentld</error>");

}

As said earlier, the Public API uses Exceptions to handle errors. Each method of the API may
throw different exceptions, depending on what it does. Which exceptions can be thrown is usually
documented for each method. In our case, | oadCont ent () may throw two types of exceptions: N
ot FoundExcept i on, if the requested ID isn't found, and Unaut hor i zedExcept i on if the
currently logged in user isn't allowed to view the requested content.

It is a good practice to cover each exception you expect to happen. In this case, since our
Command takes the Content ID as a parameter, this ID may either not exist, or the referenced
Content item may not be visible to our user. Both cases are covered with explicit error messages.

Traversing a Location subtree

This recipe will show how to traverse a Location's subtree. The full code implements a command
that takes a Location ID as an argument and recursively prints this location's subtree.

Full code
https://github.com/ezsystems/CookbookBundle/blob/master/Command/BrowseLocations
Command.php

In this code, we introduce the LocationService. This service is used to interact with Locations. We
use two methods from this service: | oadLocati on() , and | oadLocat i onChi | dren()

http://php.net/exceptions
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/LocationService.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/LocationService.html#method_loadLocation
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/LocationService.html#method_loadLocationChildren
https://github.com/ezsystems/CookbookBundle/blob/master/Command/BrowseLocationsCommand.php
https://github.com/ezsystems/CookbookBundle/blob/master/Command/BrowseLocationsCommand.php

Loading a Location

try
{
/1 load the starting |ocation and browse
$l ocati on = $this->locationService->l oadLocati on(
$l ocationld);
$t hi s- >browseLocati on($l ocati on, $output);
}
catch (
\ eZ\ Publ i sh\ API \ Reposi t or y\ Except i ons\ Not FoundExcepti on
$e)
{
$output->writeln("<error>No |ocation found with id
$l ocationld</error>");
}
cat ch(
\ eZ\ Publ i sh\ APl \ Reposi t or y\ Excepti ons\ Unaut hori zedExcept
ion $e)
{
$output->witeln("<error>Current users are not
allowed to read location with id $locationld</error>");

}

As for the ContentService, | oadLocat i on() returns a Value Object, here a Locati on . Errors
are handled with exceptions: Not FoundExcept i on if the Location ID couldn't be found, and Un
aut hori zedExcept i on if the current repository user isn't allowed to view this Location.

Iterating over a Location's children

private function browselLocation(Location $location,
Qutput I nterface $output, $depth = 0)
{

$chil dLocationList =
$t hi s- >l ocat i onSer vi ce- >l oadLocat i onChi | dren($I ocati on,
$offset = 0, $limt =-1)

/1 If offset and limt had been specified to
sonmet hing el se then "all", then
$chi | dLocat i onLi st->total Count contains the total count
for iteration use

foreach ($chil dLocati onLi st->l ocations as
$chi l dLocation)

{
$t hi s- >browseLocati on($chil dLocation, $out put,
$depth + 1);
}

Locati onServi ce: : | oadLocat i onChi | dren() returns a LocationList Value Objects that we
can iterate over.

Note that unlike | oadLocat i on() , we don't need to care for permissions here: the currently
logged-in user's permissions will be respected when loading children, and Locations that can't be
viewed won't be returned at all.

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Location.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Exceptions/NotFoundException.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Exceptions/UnauthorizedException.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Exceptions/UnauthorizedException.html
https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Publish/API/Repository/Values/Content/LocationList.php

Full code
Should you need more advanced children fetching methods, the Sear chServi ce is
what you are looking for.

Viewing Content Metadata

Content is a central piece in the Public API. You will often need to start from a Content item, and
dig in from its metadata. Basic content metadata is made available through Cont ent | nf o objects
. This Value Object mostly provides primitive fields: cont ent Typel d, publ i shedDat e or mai nL
ocati onl d. But it is also used to request further Content-related Value Objects from various
services.

The full example implements an ezpubl i sh: cookbook: vi ew_cont ent _net adat a command
that prints out all the available metadata, given a Content ID.

Full code
https://github.com/ezsystems/CookbookBundle/blob/master/Command/ViewContentMet
aDataCommand.php

We introduce here several new services: URLAl i asSer vi ce , User Ser vi ce and Sect i onSer v
i ce . The concept should be familiar to you now.

Services initialization

/** @ar $repository

\ eZ\ Publ i sh\ API\ Reposi t ory\ Repository */

$repository = $t his->get Cont ai ner () - >get (
"ezpublish.api.repository');

$cont ent Service = $repository->get Content Servi ce();
$l ocati onServi ce = $repository->getLocati onService();
$url Al i asServi ce = $repository->get URLAl i asService();
$sectionService = $repository->get SectionService();
$user Servi ce = $repository->get User Service();

Setting the Repository User

In a command line script, the repository runs as if executed by the anonymous user. In
order to identify it as a different user, you need to use the User Ser vi ce as follows:

$adm ni stratorUser = $user Servi ce->| oadUser(14
)
$reposi tory->set Current User ($admi ni strat or User

)

This may be crucial when writing maintenance or synchronization scripts.

This is of course not required in template functions or controller code, as the HTTP layer
will take care of identifying the user, and automatically set it in the repository.

The Contentinfo Value Object

We will now load a Cont ent | nf o object using the provided ID and use it to get our Content item's
metadata

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/ContentInfo.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/URLAliasService.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/UserService.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/SectionService.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/SectionService.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/SearchService.html
https://github.com/ezsystems/CookbookBundle/blob/master/Command/ViewContentMetaDataCommand.php
https://github.com/ezsystems/CookbookBundle/blob/master/Command/ViewContentMetaDataCommand.php
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/UserService.html

$contentlInfo = $cont ent Servi ce- >l oadCont ent | nf o(
$contentld);

Locations

Getting Content Locations

/'l show all |ocations of the content
$l ocati ons = $l ocati onServi ce->| oadLocati ons(
$contentinfo);
$out put ->writel n("<info>LOCATI ONS</i nfo>");
foreach ($locations as $l ocation)
{

$url Alias = $url AliasService->reverselLookup(
$l ocation);

$out put->writeln(" $location->pathString
($url Ali as->path)");
}
We firstuse LocationService ::|oadLocations() togetthe Locations for our Cont ent |

nf 0. This method returns an array of Locat i on Value Objects. In this example, we print out the
Location's path string (/path/to/content). We also use URLAliasService::reverseLookup() to get the
Location's main URLAlias.

Relations

We now want to list relations from and to our Content. Since relations are versioned, we need to
feed the Cont ent Servi ce: : | oadRel ati ons() with a Ver si onl nf o object. We can get the
current version's Ver si onl nf o using Cont ent Servi ce: : | oadVer si onl nfo() . If we had
been looking for an archived version, we could have specified the version number as the second
argument to this method.

Browsing a Content's relations

/'l show all relations of the current version
$versi onl nfo = $cont ent Servi ce- >l oadVer si onl nf o(
$contentinfo);

$rel ati ons = $content Servi ce- >l oadRel ati ons(
$versioninfo);

if (lenpty($relations))

{
$out put->writel n("<info>RELATI ONS</i nfo>");
foreach ($relations as $relation)
{
$nanme = $rel ati on->desti nati onCont ent | nf o- >nane;
$output->wite(" Relation of type "
$t hi s- >out put Rel ati onType($relation->type) . " to
content $nane");
}

}

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/LocationService.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/LocationService.html#method_loadLocations
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Location.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/URLAliasService.html#method_reverseLookup
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/URLAlias.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/ContentService.html#method_loadRelations
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/VersionInfo.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/ContentService.html#method_loadVersionInfo

We can iterate over the Relation objects array we got from | oadRel at i ons(), and use these
Value Objects to get data about our relations. It has two main properties: dest i nati onCont ent |
nf 0, and sour ceCont ent | nf 0. They also hold the relation type (embed, common, etc.), and the
optional Field this relations is made with.

ContentInfo properties

We can of course get our Content item's metadata by using the Value Object's properties.

Primitive object metadata

/1 show nmeta data
$out put->writel n("\ n<i nfo>METADATA</ i nf o>");

$output->writeln(" <info>Nane:</info>"

$cont ent | nf o- >nane);

$out put->writeln(" <info>Type:</info>"

$cont ent Type->i dentifier);

$output->writeln(" <info>Last nodified:</info>"
$content | nfo->nodi ficationDate->format('Y-md'));
$out put->writeln(" <info>Published:</info>".
$cont ent | nf o- >publ i shedDate->format('Y-md));
$output->writeln(" <info>Renoteld: </info>

$cont ent | nf o->renotel d");

$output->writeln(" <info>Main Language: </info>
$cont ent | nf o- >mai nLanguageCode") ;

$output->writeln(" <info>Always avail able:</info>"
($content | nfo->al waysAvailable ? 'Yes' : 'No'));

Owning user

We can use User Servi ce: : | oadUser () with Content owner | d property of our Content I nfot
o load the Content's owner as a User Value Object.

$owner = S$user Servi ce- >l oadUser ($cont ent | nf o- >owner | d
)

$output->writeln(" <info>Omer:</info>"

$owner - >cont ent | nf o- >nane) ;

To get the current version's creator, and not the content's owner, you need to use the cr
eat or | d property from the current version's Ver si onl nf o object.

Section

The Section's ID can be found in the sect i onl d property of the Cont ent | nf o object. To get the
matching Section Value Object, you need to use the Sect i onSer vi ce: : | oadSect i on() metho
d.

$section = $secti onServi ce->l oadSecti on(
$cont ent | nf o->sectionld);

$out put->writeln(" <info>Section:</info>
$sect i on->nane");

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Relation.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/UserService.html#method_loadUser
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/User/User.html

Versions

To conclude we can also iterate over the Content's version, as Ver si onl nf o Value Objects.

$versionl nfoArray = $content Servi ce- >l oadVer si ons(
$contentinfo);
if ('enpty($versioninfoArray))
{
$out put->writel n("\ n<info>VERSI ONS</i nfo>");
foreach ($versionlnfoArray as $versionlinfo)
{
$creator = $user Servi ce->l oadUser (
$versi onl nfo->creatorld);
$output->write(" Version
$ver si onl nfo->versionNo ");
$output->wite(" by "
$creat or->cont ent | nf o- >nane);
$output->writeln(" " . $this->outputStatus(
$versionl nfo->status) . " " .
$ver si onl nfo->i ni ti al LanguageCode);

}

We use the Cont ent Servi ce: : | oadVer si ons() method and get an array of Ver si onl nfo o
bjects.

Search

In this section we will cover how the Sear chSer vi ce can be used to search for Content, by
using a Query and a combinations of Cri t eri a you will geta Sear chResul t object back
containing list of Content and count of total hits. In the future this object will also include facets,
spell checking and "more like this" when running on a backend that supports it (for instance Solr).

Difference between filter and query

Query object contains two properties you can set criteria on, fi | t er and query, and while you
can mix and match use and use both at the same time, there is one distinction between the two:

® query: Has an effect on scoring (relevancy) calculation, and thus also on the default
sorting if no sort d ause is specified, when used with Solr and Elastic.
" Typically you'll use this for Ful | Text search criterion, and otherwise place
everything elseonfil ter.

Performing a simple full text search

Full code
https://github.com/ezsystems/CookbookBundle/blob/master/Command/FindContentCom
mand.php

In this recipe, we will run a simple full text search over every compatible attribute.

Query and Criterion objects

We introduce here a new object: Query. It is used to build up a Content query based on a set of Cr
i terion objects.

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/VersionInfo.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/ContentService.html#method_loadVersions
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/SearchService.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Query.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Query/Criterion.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Search/SearchResult.html
https://github.com/ezsystems/CookbookBundle/blob/master/Command/FindContentCommand.php
https://github.com/ezsystems/CookbookBundle/blob/master/Command/FindContentCommand.php

$query = new

\ eZ\ Publ i sh\ API\ Reposi t or y\ Val ues\ Cont ent\ Query();

/'l Use 'query' over 'filter' for FullText to get hit
score (relevancy) with Solr/Elastic

$query->query = new Query\Criterion\Full Text($text);

Multiple criteria can be grouped together using "logical criteria”, such as LogicalAnd or LogicalOr.
Since in this case we only want to run a text search, we simply use a Ful | Text criterion object.

The full list of criteria can be found on your installation in the following directory vendor/e
zsystems/ezpublish-kernel/eZ/Publish/API/Repository/Values/Content/Query/Criterion.
Additionally you may look at integration tests like vendor/ezsystems/ezpublish-kernel/ez/
Publish/API/Repository/Tests/SearchServiceTest.php for more details on how these are
used.

Running the search query and using the results

The Query object is given as an argument to Sear chSer vi ce: : fi ndCont ent () . This method
returns a Sear chResul t object. This object provides you with various information about the
search operation (number of results, time taken, spelling suggestions, or facets, as well as, of
course, the results themselves.

$result = $searchServi ce->fi ndContent($query);

$output->writeln('Found ' . $result->total Count . '
items');

foreach ($result->searchHits as $searchHit)

{

$out put - >wri t el n(
$sear chHi t - >val uehj ect - >cont ent | nf o- >nane);

}

The sear chHi t s properties of the Sear chResul t object is an array of Sear chHi t objects. Inv
al ueObj ect property of Sear chHi t, you will find the Cont ent object that matches the given Qu
ery.

Tip

If you you are searching using a unique identifier, for instance using the Content ID or
Content remote ID criterion, then you can use Sear chServi ce: : fi ndSi ngl e() , this
takes a Criterion and returns a single Content item, or throws a Not Found exception if
none is found.

Retrieving Sort Clauses for parent location
V1.7.0

You can use the method $parentLocat i on- >get Sort O auses() to return an array of Sort
Clauses for direct use on Locat i onQuery->sort Cl auses.

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Query/Criterion/LogicalAnd.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Query/Criterion/LogicalOr.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Query/Criterion/FullText.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/SearchService.html#method_findContent
https://github.com/ezsystems/ezpublish-kernel/tree/master/eZ/Publish/API/Repository/Values/Content/Query/Criterion
https://github.com/ezsystems/ezpublish-kernel/tree/master/eZ/Publish/API/Repository/Values/Content/Query/Criterion
https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Publish/API/Repository/Tests/SearchServiceTest.php
https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Publish/API/Repository/Tests/SearchServiceTest.php
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/SearchService.html#method_findSingle

Performing an advanced search

Full code
https://github.com/ezsystems/CookbookBundle/blob/master/Command/FindContent2Co
mmand.php

As explained in the previous chapter, Criterion objects are grouped together using logical criteria.
We will now see how multiple criteria objects can be combined into a fine grained search Query.

use
eZ\ Publ i sh\ APl \ Reposi t ory\ Val ues\ Cont ent\ Query\ Criterion

use eZ\ Publ i sh\ API\ Reposi t or y\ Val ues\ Cont ent ;
Il...]

$query = new Query();
$criterionl = new Criterion\Subtree(
$l ocati onServi ce->l oadLocation(2)->pathString);
$criterion2 = new Criterion\Content Typeldentifier(
"folder');
$query->filter = new Criterion\Logi cal And(

array($criterionl, $criterion2)

)

$result = $searchServi ce->findContent($query);

A Subt r ee criterion limits the search to the subtree with pathString, which looks like: / 1/ 2/ . A Co
nt ent Typel d Criterion to limit the search to Content of Content Type 1. Those two criteria are
grouped with a Logi cal And operator. The query is executed as before, with Sear chServi ce: : f
indContent ().

Performing a fetch like search

Full code
https://github.com/ezsystems/CookbookBundle/blob/master/Command/FindContent3Co
mmand.php

A search isn't only meant for searching, it also provides the future interface for what you in eZ
Publish 4.x would know as a content “fetch". And as this is totally backend agnostic, in future
versions this will be powered by either Solr or ElasticSearch meaning it also replaces "ezfind" fetch
functions.

Following the examples above we now change it a bit to combine several criteria with both an AND
and an OR condition.

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Query/Criterion/Subtree.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Query/Criterion/ContentTypeId.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Query/Criterion/ContentTypeId.html
https://github.com/ezsystems/CookbookBundle/blob/master/Command/FindContent2Command.php
https://github.com/ezsystems/CookbookBundle/blob/master/Command/FindContent2Command.php
https://github.com/ezsystems/CookbookBundle/blob/master/Command/FindContent3Command.php
https://github.com/ezsystems/CookbookBundle/blob/master/Command/FindContent3Command.php

use
eZ\ Publ i sh\ API \ Reposi t ory\ Val ues\ Content\ Query\ Criterion

use eZ\ Publ i sh\ API\ Reposi t or y\ Val ues\ Cont ent ;
Il

$query = new Query();
$query->filter = new Criterion\Logi cal And(
array(
new Criterion\ParentLocationld(2),
new Criterion\Logical O (
array(
new Criterion\ContentTypeldentifier(
"folder'),
new Criterion\ContentTypeld(2)

)

$result = $searchServi ce->fi ndContent($query);

A ParentLocationld criterion limits the search to the children of location 2. An array of "Cont
ent Typel d" Criteria to limit the search to Content of ContentType's with id 1 or 2 grouped in a Lo
gi cal O operator. Those two criteria are grouped with a Logi cal And operator. As always the
query is executed as before, with Sear chSer vi ce: : fi ndCont ent () .

Want to do a subtree filter? Change the location filter to use the Subtree criterion filter as
shown in the advanced search example above.

Using in() instead of OR

The above example is fine, but it can be optimized a bit by taking advantage of the fact that all filter
criteria support being given an array of values (IN operator) instead of a single value (EQ operator).

You can also use the Cont ent Typel denti fi er Criterion:

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Query/Criterion/ParentLocationId.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Query/Criterion/ContentTypeIdentifier.html

use
eZ\ Publ i sh\ API \ Reposi t ory\ Val ues\ Content\ Query\ Criterion

use eZ\ Publ i sh\ API\ Reposi t or y\ Val ues\ Cont ent ;
Il

$query = new Query();
$query->filter = new Criterion\Logi cal And(
array(
new Criterion\ParentLocationld(2),
new Criterion\ContentTypeldentifier(array(
"article', 'folder'))

)
)

$result = $searchServi ce->findContent($query);

Tip

All filter criteria are capable of doing an "IN" selection, the ParentLocationld above could,
for example, have been provided "array(2, 43)" to include second level children in both
your content tree (2) and your media tree (43).

Performing a Faceted Search

DOC IS WIP (EZP-26453)

Under construction
Faceted Search is not fully implemented yet, only partial implementation exists for use
with Content (and Contentinfo) search on Solr, limited to visitors for:

® Cont ent Type & Sect i on, with limitations:
= FacetBuilder: Only uses mi nCount and | i m t properties.
® Facet: Returns ent ri es group data as id's, while it is going to be
returned as identifiers as stated in APl documentation.
= User, with limitations:
® FacetBuilder: Only uses m nCount and | i mi t properties, hard-coded
to creator as t ype which has not been documented in API while owner,
group and modifier is currently not supported.
= For further info see the corresponding Epic:

[F] EZP-26465 - Search Facets SPECIFICATION

You can register custom facet builder visitors with Solr for Content(Info)
search.

Contribution wanted

The link above is also the starting point for contributing visitors for other API Fa
cetBuilders and Facets. As for integration tests, fixtures that will need
adjustments are found in ezpublish-kernel, and those missing in that link but d
efined in SearchServiceTest, are basically not implemented yet.

To be able to take advantage of facets, we can set the Quer y- >f acet Bui | der s property, which
will result in relevant facets being returned on Sear chResul t - >f acet s. All facet builders can
share the following properties:

" m nCount : The minimum of hits of a given grouping, e.g. minimum number of content

https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Publish/API/Repository/Values/Content/Search/Facet/ContentTypeFacet.php#L21
https://jira.ez.no/browse/EZP-26465
https://github.com/ezsystems/ezplatform-solr-search-engine/blob/v1.1.1/lib/Resources/config/container/solr/facet_builder_visitors.yml
https://github.com/ezsystems/ezpublish-kernel/tree/master/eZ/Publish/API/Repository/Values/Content/Query/FacetBuilder
https://github.com/ezsystems/ezpublish-kernel/tree/master/eZ/Publish/API/Repository/Values/Content/Query/FacetBuilder
https://github.com/ezsystems/ezpublish-kernel/tree/master/eZ/Publish/API/Repository/Values/Content/Search/Facet
https://github.com/ezsystems/ezpublish-kernel/tree/master/eZ/Publish/API/Repository/Tests/_fixtures/Solr
https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Publish/API/Repository/Tests/SearchServiceTest.php#L2474
https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Publish/API/Repository/Tests/SearchServiceTest.php#L2474

items in a given facet for it to be returned
" | imt:Maximum number of facets to be returned; only X number of facets with the
greatest number of hits will be returned.

As an example, let's appl y User Facet to be able to group content according to the creator:

use

eZ\ Publ i sh\ API \ Reposi t ory\ Val ues\ Cont ent\ Query\ Criterion
use

eZ\ Publ i sh\ API \ Reposi t or y\ Val ues\ Cont ent\ Quer y\ Facet Bui |
der;

L.

$query = new Query();
$query->filter = new
Criterion\Content Typeldentifier(['article']);
$query->f acet Bui |l ders[] = new
Facet Bui | der\ User Facet Bui | der (
[

/1l "type' => 'creator', // this is currently
i nplied, expect api change here once facets are
i mpl emented fully

"m nCount' => 2,

"limt" =>5

)

$result = $searchServi ce->findContentl|nfo($query);
list($userld, $articleCount) =
$resul t->facets[0]->entries;

Performing a pure search count

In many cases you might need the number of Content items matching a search, but with no need to
do anything else with the results.

Thanks to the fact that the " searchHits " property of the Sear chResul t object always refers to the
total amount, it is enough to run a standard search and set $limit to 0. This way no results will be
retrieved, and the search will not be slowed down, even when the number of matching results is
huge.

use eZ\ Publ i sh\ API\ Reposi t ory\ Val ues\ Cont ent\ Query;
Il]

$query = new Query();
$query->linmit = 0;

/1 [...] (Add criteria as shown above)

$resul t Count = $searchServi ce->findContent($query
) - >t ot al Count ;

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Search/SearchResult.html

	Browsing, finding, viewing

