
Browsing, finding, viewing
We will start by going through the various ways to find and retrieve content from eZ Platform using
the API. While this will be covered in further dedicated documentation, it is necessary to explain a
few basic concepts of the Public API. In the following recipes, you will learn about the general
principles of the API as they are introduced in individual recipes.

Displaying values from a Content item

In this recipe, we will see how to fetch a Content item from the repository, and obtain its Field's
content.

Let's first see the full code. You can see the Command line version at https://github.com/ezsystems
./CookbookBundle/blob/master/Command/ViewContentCommand.php

In this topic:

Displaying values from a
Content item
Traversing a Location
subtree
Viewing Content Metadata

Setting the
Repository User
The ContentInfo
Value Object
Locations
Relations
ContentInfo
properties
Owning user
Section
Versions

Search
Performing a simple
full text search
Retrieving Sort
Clauses for parent
location
Performing an
advanced search
Performing a fetch
like search
Performing a
Faceted Search
Performing a pure
search count

https://github.com/ezsystems/CookbookBundle/blob/master/Command/ViewContentCommand.php
https://github.com/ezsystems/CookbookBundle/blob/master/Command/ViewContentCommand.php

$repository = $this->getContainer()->get(
'ezpublish.api.repository');
$contentService = $repository->getContentService();
$contentTypeService =
$repository->getContentTypeService();
$fieldTypeService = $repository->getFieldTypeService();

try
{
 $content = $contentService->loadContent(66);
 $contentType = $contentTypeService->loadContentType(
$content->contentInfo->contentTypeId);
 // iterate over the field definitions of the content
type and print out each field's identifier and value
 foreach($contentType->fieldDefinitions as
$fieldDefinition)
 {
 $output->write($fieldDefinition->identifier .
": ");
 $fieldType = $fieldTypeService->getFieldType(
$fieldDefinition->fieldTypeIdentifier);
 $field = $content->getField(
$fieldDefinition->identifier);

 // We use the Field's toHash() method to get readable
content out of the Field
 $valueHash = $fieldType->toHash($field->value
);
 $output->writeln($valueHash);
 }
}
catch(
\eZ\Publish\API\Repository\Exceptions\NotFoundException
$e)
{
 // if the id is not found
 $output->writeln("No content with id $contentId");
}
catch(
\eZ\Publish\API\Repository\Exceptions\UnauthorizedExcept
ion $e)
{
 // not allowed to read this content
 $output->writeln("Anonymous users are not allowed
to read content with id $contentId");
}

Let's analyze this code block by block.

Viewing content

$repository = $this->getContainer()->get(
'ezpublish.api.repository');
$contentService = $repository->getContentService();
$contentTypeService =
$repository->getContentTypeService();
$fieldTypeService = $repository->getFieldTypeService();

This is the initialization part. As explained above, everything in the Public API goes through the
repository via dedicated services. We get the repository from the service container, using the
method of our container, obtained via . Using our get() $this->getContainer() $repositor

 variable, we fetch the two services we will need using and y getContentService() getFieldT
.ypeService()

try
{
 // iterate over the field definitions of the content
type and print out each field's identifier and value
 $content = $contentService->loadContent(66);

Everything starting from line 5 is about getting our Content and iterating over its Fields. You can
see that the whole logic is part of a block. Since the Public API uses Exceptions fortry/catch
error handling, this is strongly encouraged, as it will allow you to conditionally catch the various
errors that may happen. We will cover the exceptions we expect in a later paragraph.

The first thing we do is use the Content Service to load a Content item using its ID, 66: $contentS
. As you can see on the API doc page, this method expects aervice-> loadContent (66)

Content ID, and returns a .Content Value Object

foreach($contentType->fieldDefinitions as
$fieldDefinition)
{
 // ignore ezpage
 if($fieldDefinition->fieldTypeIdentifier ==
'ezpage')
 continue;
 $output->write($fieldDefinition->identifier . ": "
);
 $fieldType = $fieldTypeService->getFieldType(
$fieldDefinition->fieldTypeIdentifier);
 $fieldValue = $content->getFieldValue(
$fieldDefinition->identifier);
 $valueHash = $fieldType->toHash($fieldValue);
 $output->writeln($valueHash);
}

This block is the one that actually displays the value.

It iterates over the Content item's Fields using the Content Type's FieldDefinitions ($contentType
).->fieldDefinitions

For each Field Definition, we start by displaying its identifier ($fieldDefinition->identifier
). We then get the Field Type instance using the Field Type Service ($fieldTypeService->get

). This method expects theFieldType($fieldDefinition->fieldTypeIdentifier)
requested Field Type's identifier, as a string (ezstring, ezxmltext, etc.), and returns an eZ\Publis

 object.h\API\Repository\FieldType

The Field Value object is obtained using the method of the Content ValuegetFieldValue()
Object which we obtained using .ContentService::loadContent()

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/ContentService.html#method_loadContent
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Content.html

Using the Field Type object, we can convert the Field Value to a hash using the methodtoHash()
, provided by every Field Type. This method returns a primitive type (string, hash) out of a Field
instance.

With this example, you should get a first idea on how you interact with the API. Everything is done
through services, each service being responsible for a specific part of the repository (Content, Field
Type, etc.).

catch (
\eZ\Publish\API\Repository\Exceptions\NotFoundException
$e)
{
 $output->writeln("<error>No content with id
$contentId found</error>");
}
catch (
\eZ\Publish\API\Repository\Exceptions\UnauthorizedExcept
ion $e)
{
 $output->writeln("<error>Permission denied on
content with id $contentId</error>");
}

As said earlier, the Public API uses to handle errors. Each method of the API mayExceptions
throw different exceptions, depending on what it does. Which exceptions can be thrown is usually
documented for each method. In our case, may throw two types of exceptions: loadContent() N

, if the requested ID isn't found, and if theotFoundException UnauthorizedException
currently logged in user isn't allowed to view the requested content.

It is a good practice to cover each exception you expect to happen. In this case, since our
Command takes the Content ID as a parameter, this ID may either not exist, or the referenced
Content item may not be visible to our user. Both cases are covered with explicit error messages.

Traversing a Location subtree

This recipe will show how to traverse a Location's subtree. The full code implements a command
that takes a Location ID as an argument and recursively prints this location's subtree.

In this code, we introduce the . This service is used to interact with Locations. WeLocationService
use two methods from this service: , and . loadLocation() loadLocationChildren()

Loading Content in different languages
Since we didn't specify any language code, our Field object is returned in the given
Content item's main language. If you'd prefer it to fall back to the SiteAccess
language(s), then take advantage of TranslationHelpers. Or if you want to use an
altogether different language, you can specify a language code in the call:getField()

$content->getFieldValue(
$fieldDefinition->identifier, 'fre-FR')

Exceptions handling

Full code
https://github.com/ezsystems/CookbookBundle/blob/master/Command/BrowseLocations
Command.php

http://php.net/exceptions
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/LocationService.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/LocationService.html#method_loadLocation
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/LocationService.html#method_loadLocationChildren
https://github.com/ezsystems/CookbookBundle/blob/master/Command/BrowseLocationsCommand.php
https://github.com/ezsystems/CookbookBundle/blob/master/Command/BrowseLocationsCommand.php

try
{
 // load the starting location and browse
 $location = $this->locationService->loadLocation(
$locationId);
 $this->browseLocation($location, $output);
}
catch (
\eZ\Publish\API\Repository\Exceptions\NotFoundException
$e)
{
 $output->writeln("<error>No location found with id
$locationId</error>");
}
catch(
\eZ\Publish\API\Repository\Exceptions\UnauthorizedExcept
ion $e)
{
 $output->writeln("<error>Current users are not
allowed to read location with id $locationId</error>");
}

As for the ContentService, returns a Value Object, here a . ErrorsloadLocation() Location
are handled with exceptions: if the Location ID couldn't be found, and NotFoundException Un

if the current repository user isn't allowed to view this Location. authorizedException

private function browseLocation(Location $location,
OutputInterface $output, $depth = 0)
{
 $childLocationList =
$this->locationService->loadLocationChildren($location,
$offset = 0, $limit = -1);
 // If offset and limit had been specified to
something else then "all", then
$childLocationList->totalCount contains the total count
for iteration use
 foreach ($childLocationList->locations as
$childLocation)
 {
 $this->browseLocation($childLocation, $output,
$depth + 1);
 }
}

LocationService::loadLocationChildren() returns a Value Objects that weLocationList
can iterate over.

Note that unlike , we don't need to care for permissions here: the currentlyloadLocation()
logged-in user's permissions will be respected when loading children, and Locations that can't be
viewed won't be returned at all.

Loading a Location

Iterating over a Location's children

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Location.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Exceptions/NotFoundException.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Exceptions/UnauthorizedException.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Exceptions/UnauthorizedException.html
https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Publish/API/Repository/Values/Content/LocationList.php

Viewing Content Metadata

Content is a central piece in the Public API. You will often need to start from a Content item, and
dig in from its metadata. Basic content metadata is made available through objects ContentInfo
. This Value Object mostly provides primitive fields: , or contentTypeId publishedDate mainL

. But it is also used to request further Content-related Value Objects from variousocationId
services.

The full example implements an commandezpublish:cookbook:view_content_metadata
that prints out all the available metadata, given a Content ID.

We introduce here several new services: , and URLAliasService UserService SectionServ
. The concept should be familiar to you now. ice

/** @var $repository
\eZ\Publish\API\Repository\Repository */
$repository = $this->getContainer()->get(
'ezpublish.api.repository');
$contentService = $repository->getContentService();
$locationService = $repository->getLocationService();
$urlAliasService = $repository->getURLAliasService();
$sectionService = $repository->getSectionService();
$userService = $repository->getUserService();

Setting the Repository User

The ContentInfo Value Object

We will now load a object using the provided ID and use it to get our Content item'sContentInfo
metadata

Full code
Should you need more advanced children fetching methods, the is SearchService
what you are looking for.

Full code
https://github.com/ezsystems/CookbookBundle/blob/master/Command/ViewContentMet
aDataCommand.php

Services initialization

In a command line script, the repository runs as if executed by the anonymous user. In
order to identify it as a different user, you need to use the as follows: UserService

$administratorUser = $userService->loadUser(14
);
$repository->setCurrentUser($administratorUser
);

This may be crucial when writing maintenance or synchronization scripts.

This is of course not required in template functions or controller code, as the HTTP layer
will take care of identifying the user, and automatically set it in the repository.

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/ContentInfo.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/URLAliasService.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/UserService.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/SectionService.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/SectionService.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/SearchService.html
https://github.com/ezsystems/CookbookBundle/blob/master/Command/ViewContentMetaDataCommand.php
https://github.com/ezsystems/CookbookBundle/blob/master/Command/ViewContentMetaDataCommand.php
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/UserService.html

$contentInfo = $contentService->loadContentInfo(
$contentId);

Locations

// show all locations of the content
$locations = $locationService->loadLocations(
$contentInfo);
$output->writeln("<info>LOCATIONS</info>");
foreach ($locations as $location)
{
 $urlAlias = $urlAliasService->reverseLookup(
$location);
 $output->writeln(" $location->pathString
($urlAlias->path)");
}

We first use to the for our ()LocationService ::loadLocations get Locations ContentI
. This method returns an array of Value Objects. In this example, we print out thenfo Location

Location's path string (/path/to/content). We also use to get theURLAliasService::reverseLookup()
Location's main .URLAlias

Relations

We now want to list relations from and to our Content. Since relations are versioned, we need to
feed the with a object. We can get the ContentService::loadRelations() VersionInfo
current version's using . If we hadVersionInfo ContentService::loadVersionInfo()
been looking for an archived version, we could have specified the version number as the second
argument to this method.

// show all relations of the current version
$versionInfo = $contentService->loadVersionInfo(
$contentInfo);
$relations = $contentService->loadRelations(
$versionInfo);
if (!empty($relations))
{
 $output->writeln("<info>RELATIONS</info>");
 foreach ($relations as $relation)
 {
 $name = $relation->destinationContentInfo->name;
 $output->write(" Relation of type " .
$this->outputRelationType($relation->type) . " to
content $name");
 }
}

Getting Content Locations

Browsing a Content's relations

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/LocationService.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/LocationService.html#method_loadLocations
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Location.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/URLAliasService.html#method_reverseLookup
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/URLAlias.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/ContentService.html#method_loadRelations
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/VersionInfo.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/ContentService.html#method_loadVersionInfo

We can iterate over the objects array we got from , and use theseRelation loadRelations()
Value Objects to get data about our relations. It has two main properties: destinationContentI

, and . They also hold the relation type (embed, common, etc.), and thenfo sourceContentInfo
optional Field this relations is made with.

ContentInfo properties

We can of course get our Content item's metadata by using the Value Object's properties.

// show meta data
$output->writeln("\n<info>METADATA</info>");
$output->writeln(" <info>Name:</info> " .
$contentInfo->name);
$output->writeln(" <info>Type:</info> " .
$contentType->identifier);
$output->writeln(" <info>Last modified:</info> " .
$contentInfo->modificationDate->format('Y-m-d'));
$output->writeln(" <info>Published:</info> ".
$contentInfo->publishedDate->format('Y-m-d'));
$output->writeln(" <info>RemoteId:</info>
$contentInfo->remoteId");
$output->writeln(" <info>Main Language:</info>
$contentInfo->mainLanguageCode");
$output->writeln(" <info>Always available:</info> " .
($contentInfo->alwaysAvailable ? 'Yes' : 'No'));

Owning user

We can use with Content property of our t UserService::loadUser() ownerId ContentInfo
o load the Content's owner as a Value Object. User

$owner = $userService->loadUser($contentInfo->ownerId
);
$output->writeln(" <info>Owner:</info> " .
$owner->contentInfo->name);

Section

The Section's ID can be found in the property of the object. To get thesectionId ContentInfo
matching Section Value Object, you need to use the methoSectionService::loadSection()
d.

$section = $sectionService->loadSection(
$contentInfo->sectionId);
$output->writeln(" <info>Section:</info>
$section->name");

Primitive object metadata

To get the current version's creator, and not the content's owner, you need to use the cr
 property from the current version's object.eatorId VersionInfo

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Relation.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/UserService.html#method_loadUser
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/User/User.html

Versions

To conclude we can also iterate over the Content's version, as Value Objects. VersionInfo

$versionInfoArray = $contentService->loadVersions(
$contentInfo);
if (!empty($versionInfoArray))
{
 $output->writeln("\n<info>VERSIONS</info>");
 foreach ($versionInfoArray as $versionInfo)
 {
 $creator = $userService->loadUser(
$versionInfo->creatorId);
 $output->write(" Version
$versionInfo->versionNo ");
 $output->write(" by " .
$creator->contentInfo->name);
 $output->writeln(" " . $this->outputStatus(
$versionInfo->status) . " " .
$versionInfo->initialLanguageCode);
 }
}

We use the method and get an array of o ContentService::loadVersions() VersionInfo
bjects.

Search

In this section we will cover how the can be used to search for Content, by SearchService
using a and a combinations of you will get a object back Query Criteria SearchResult
containing list of Content and count of total hits. In the future this object will also include facets,
spell checking and "more like this" when running on a backend that supports it .(for instance Solr)

Difference between filter and query

Query object contains two properties you can set criteria on, and , and while youfilter query
can mix and match use and use both at the same time, there is one distinction between the two:

query: Has an effect on scoring calculation, and thus also on the default(relevancy)
sorting if no is specified, sortClause when used with Solr and Elastic.

Typically you'll use this for search criterion, and otherwise placeFullText
everything else on .filter

Performing a simple full text search

In this recipe, we will run a simple full text search over every compatible attribute.

Query and Criterion objects

We introduce here a new object: . It is used to build up a Content query based on a set of Query Cr
 objects.iterion

Full code
https://github.com/ezsystems/CookbookBundle/blob/master/Command/FindContentCom
mand.php

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/VersionInfo.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/ContentService.html#method_loadVersions
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/SearchService.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Query.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Query/Criterion.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Search/SearchResult.html
https://github.com/ezsystems/CookbookBundle/blob/master/Command/FindContentCommand.php
https://github.com/ezsystems/CookbookBundle/blob/master/Command/FindContentCommand.php

$query = new
\eZ\Publish\API\Repository\Values\Content\Query();
// Use 'query' over 'filter' for FullText to get hit
score (relevancy) with Solr/Elastic
$query->query = new Query\Criterion\FullText($text);

Multiple criteria can be grouped together using "logical criteria", such as or .LogicalAnd LogicalOr
Since in this case we only want to run a text search, we simply use a criterion object. FullText

Running the search query and using the results

The object is given as an argument to . This methodQuery SearchService::findContent()
returns a object. This object provides you with various information about theSearchResult
search operation (number of results, time taken, spelling suggestions, or facets, as well as, of
course, the results themselves.

$result = $searchService->findContent($query);
$output->writeln('Found ' . $result->totalCount . '
items');
foreach ($result->searchHits as $searchHit)
{
 $output->writeln(
$searchHit->valueObject->contentInfo->name);
}

The properties of the object is an array of objects. In searchHits SearchResult SearchHit v
 property of , you will find the object that matches the given alueObject SearchHit Content Qu

.ery

Retrieving Sort Clauses for parent location

V1.7.0

You can use the method $parentL to return an array of Sortocation->getSortClauses()
Clauses for direct use on .LocationQuery->sortClauses

The full list of criteria can be found on your installation in the following directory vendor/e
.zsystems/ezpublish-kernel/eZ/Publish/API/Repository/Values/Content/Query/Criterion

Additionally you may look at integration tests like vendor/ezsystems/ezpublish-kernel/eZ/
 for more details on how these arePublish/API/Repository/Tests/SearchServiceTest.php

used.

Tip
 If you you are searching using a unique identifier, for instance using the Content ID or
Content remote ID criterion, then you can use , this SearchService::findSingle()
takes a Criterion and returns a single Content item, or throws a exception ifNotFound
none is found.

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Query/Criterion/LogicalAnd.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Query/Criterion/LogicalOr.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Query/Criterion/FullText.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/SearchService.html#method_findContent
https://github.com/ezsystems/ezpublish-kernel/tree/master/eZ/Publish/API/Repository/Values/Content/Query/Criterion
https://github.com/ezsystems/ezpublish-kernel/tree/master/eZ/Publish/API/Repository/Values/Content/Query/Criterion
https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Publish/API/Repository/Tests/SearchServiceTest.php
https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Publish/API/Repository/Tests/SearchServiceTest.php
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/SearchService.html#method_findSingle

Performing an advanced search

As explained in the previous chapter, Criterion objects are grouped together using logical criteria.
We will now see how multiple criteria objects can be combined into a fine grained search .Query

use
eZ\Publish\API\Repository\Values\Content\Query\Criterion
;
use eZ\Publish\API\Repository\Values\Content;

// [...]

$query = new Query();
$criterion1 = new Criterion\Subtree(
$locationService->loadLocation(2)->pathString);
$criterion2 = new Criterion\ContentTypeIdentifier(
'folder');
$query->filter = new Criterion\LogicalAnd(
 array($criterion1, $criterion2)
);

$result = $searchService->findContent($query);

A criterion limits the search to the subtree with pathString, which looks like: . A Subtree /1/2/ Co
Criterion to limit the search to Content of Content Type 1. Those two criteria are ntentTypeId

grouped with a operator. The query is executed as before, with LogicalAnd SearchService::f
.indContent()

Performing a fetch like search

A search isn't only meant for searching, it also provides the future interface for what you in eZ
Publish 4.x would know as a content "fetch". And as this is totally backend agnostic, in future
versions this will be powered by either Solr or ElasticSearch meaning it also replaces "ezfind" fetch
functions.

Following the examples above we now change it a bit to combine several criteria with both an AND
and an OR condition.

Full code
https://github.com/ezsystems/CookbookBundle/blob/master/Command/FindContent2Co
mmand.php

Full code
https://github.com/ezsystems/CookbookBundle/blob/master/Command/FindContent3Co
mmand.php

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Query/Criterion/Subtree.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Query/Criterion/ContentTypeId.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Query/Criterion/ContentTypeId.html
https://github.com/ezsystems/CookbookBundle/blob/master/Command/FindContent2Command.php
https://github.com/ezsystems/CookbookBundle/blob/master/Command/FindContent2Command.php
https://github.com/ezsystems/CookbookBundle/blob/master/Command/FindContent3Command.php
https://github.com/ezsystems/CookbookBundle/blob/master/Command/FindContent3Command.php

use
eZ\Publish\API\Repository\Values\Content\Query\Criterion
;
use eZ\Publish\API\Repository\Values\Content;

// [...]

$query = new Query();
$query->filter = new Criterion\LogicalAnd(
 array(
 new Criterion\ParentLocationId(2),
 new Criterion\LogicalOr(
 array(
 new Criterion\ContentTypeIdentifier(
'folder'),
 new Criterion\ContentTypeId(2)
)
)
)
);

$result = $searchService->findContent($query);

A criterion limits the search to the children of location 2. An array of " ParentLocationId Cont
 Criteria to limit the search to Content of ContentType's with id 1 or 2 grouped in a entTypeId" Lo

 operator. Those two criteria are grouped with a operator. As always thegicalOr LogicalAnd
query is executed as before, with .SearchService::findContent()

Using in() instead of OR

The above example is fine, but it can be optimized a bit by taking advantage of the fact that all filter
criteria support being given an array of values (IN operator) instead of a single value (EQ operator).

You can also use the Criterion: ContentTypeIdentifier

Want to do a subtree filter? Change the location filter to use the Subtree criterion filter as
shown in the advanced search example above.

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Query/Criterion/ParentLocationId.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Query/Criterion/ContentTypeIdentifier.html

use
eZ\Publish\API\Repository\Values\Content\Query\Criterion
;
use eZ\Publish\API\Repository\Values\Content;

// [...]

$query = new Query();
$query->filter = new Criterion\LogicalAnd(
 array(
 new Criterion\ParentLocationId(2),
 new Criterion\ContentTypeIdentifier(array(
'article', 'folder'))
)
);

$result = $searchService->findContent($query);

Performing a Faceted Search

DOC IS WIP (EZP-26453)

To be able to take advantage of facets, we can set the property, whichQuery->facetBuilders
will result in relevant facets being returned on . All facet builders canSearchResult->facets
share the following properties:

minCount: The minimum of hits of a given grouping, e.g. minimum number of content

Tip
All filter criteria are capable of doing an "IN" selection, the ParentLocationId above could,
for example, have been provided "array(2, 43)" to include second level children in both
your content tree (2) and your media tree (43).

Under construction
Faceted Search is not fully implemented yet, only partial implementation exists for use
with Content search on Solr, limited to visitors for:(and ContentInfo)

ContentType & Section, with limitations:
FacetBuilder: Only uses and properties.minCount limit
Facet: Returns entries group data as id's, while it is going to be
returned as identifiers as stated in .API documentation

User, with limitations:
FacetBuilder: Only uses and properties, hard-codedminCount limit
to creator as which has not been documented in API while owner,type
group and modifier is currently not supported.

For further info see the corresponding Epic:

 - EZP-26465 Search Facets SPECIFICATION

You can register custom facet builder visitors with Solr for Content(Info)
search.

Contribution wanted
The link above is also the starting point for contributing visitors for other API Fa
cetBuilders and Facets. As for integration tests, fixtures that will need
adjustments are found in ezpublish-kernel, and those missing in that link but d

, are basically not implemented yet.efined in SearchServiceTest

https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Publish/API/Repository/Values/Content/Search/Facet/ContentTypeFacet.php#L21
https://jira.ez.no/browse/EZP-26465
https://github.com/ezsystems/ezplatform-solr-search-engine/blob/v1.1.1/lib/Resources/config/container/solr/facet_builder_visitors.yml
https://github.com/ezsystems/ezpublish-kernel/tree/master/eZ/Publish/API/Repository/Values/Content/Query/FacetBuilder
https://github.com/ezsystems/ezpublish-kernel/tree/master/eZ/Publish/API/Repository/Values/Content/Query/FacetBuilder
https://github.com/ezsystems/ezpublish-kernel/tree/master/eZ/Publish/API/Repository/Values/Content/Search/Facet
https://github.com/ezsystems/ezpublish-kernel/tree/master/eZ/Publish/API/Repository/Tests/_fixtures/Solr
https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Publish/API/Repository/Tests/SearchServiceTest.php#L2474
https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Publish/API/Repository/Tests/SearchServiceTest.php#L2474

items in a given facet for it to be returned
limit: Maximum number of facets to be returned; only X number of facets with the
greatest number of hits will be returned.

As an example, let's apply UserFacet to be able to group content according to the creator:

use
eZ\Publish\API\Repository\Values\Content\Query\Criterion
;
use
eZ\Publish\API\Repository\Values\Content\Query\FacetBuil
der;

// [...]

$query = new Query();
$query->filter = new
Criterion\ContentTypeIdentifier(['article']);
$query->facetBuilders[] = new
FacetBuilder\UserFacetBuilder(
 [
 // 'type' => 'creator', // this is currently
implied, expect api change here once facets are
implemented fully
 'minCount' => 2,
 'limit' => 5
]
);

$result = $searchService->findContentInfo($query);
list($userId, $articleCount) =
$result->facets[0]->entries;

Performing a pure search count

In many cases you might need the number of Content items matching a search, but with no need to
do anything else with the results.

Thanks to the fact that the " searchHits " property of the object always refers to the SearchResult
total amount, it is enough to run a standard search and set $limit to 0. This way no results will be
retrieved, and the search will not be slowed down, even when the number of matching results is
huge.

use eZ\Publish\API\Repository\Values\Content\Query;

// [...]

$query = new Query();
$query->limit = 0;

// [...] (Add criteria as shown above)

$resultCount = $searchService->findContent($query
)->totalCount;

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/Search/SearchResult.html

	Browsing, finding, viewing

