Build the content list
Two ways to generate pages in PlatformUl

As written in the PlatformUI technical introduction, pages in PlatformUl can be generated either by
the browser based on the REST API (or any other API) responses or by doing part of the rendering
on the server side for instance with some Twig templates called by a Symfony controller. Both
options are perfectly valid and choosing one or the other is mainly a matter of taste. This step will
examine both strategies even if the later steps will be based on the server-side rendering.

Browser side rendering

In this case, the browser uses the REST API to fetch the necessary objects/structures and then the
logic of transforming that to an HTML page is written in JavaScript and executed by the browser.

View service to fetch the Location list

Minimal view service

The first thing to do is to create a view service. A view service is a component extending Y. eZ. Vi
ewSer vi ce. So we first need to declare and create a module and then this module will create the
minimal view service class:

yui.yml

ezconf-1istviewservice:

requires: ['ez-viewservice']

pat h:
%ext endi ng_pl at formui . public_dir%js/views/services/ezco
nf-listviewservice.js

Theninezconf-1istvi ewservi ce. s we can write the minimal view service:

Minimal ListViewService

YUl . add(' ezconf-listviewservice', function (Y) {
Y. namespace(' eZConf"');

Y. eZConf . Li st Vi ewServi ce =
Y. Base. creat e(' ezconfLi st Vi enService', Y.eZ ViewService,
(1, {
initializer: function () {
consol e.l og("Hey, |I'mthe ListViewService");
b
});
)

This is the minimal view service, it only writes a "hello world" message in the console when
instantiated but for now it's not used anywhere in the application.

Configure the route to use the view service

To really use our view service in the application, we have to change the route so that the
PlatformUI application instantiates and uses the view service when building the page. To do that,

Tutorial path

https://doc.ez.no/display/DEVELOPER/Extending+eZ+Platform

we have to add the route ser vi ce property to hold the constructor function of the view service so
the application plugin that adds the route will also have to require the ezconf -1 i st vi ewser vi ce
module:

yui.yml
ezconf-1istappl ugin:
requires: ['ez-pluginregistry', "plugin, 'base',
"ezconf-listview, 'ezconf-listviewservice'] # the view

nodul e has been added
dependencyOf: ['ez-platfornmuiapp']

After doing that, Y. eZConf . Li st Vi ewSer vi ce becomes available in the application plugin code
and we can change the eZConf Li st route to:

Creating a route with a view service

app. rout e({
nane: "eZConflList",
path: "/ezconf/list",
vi ew. "ezconfListView',
service: Y.eZConf.ListViewService, // constructor
function to use to instantiate the view service
sideViews: {'navigationHub': true, 'discoveryBar':

fal se},

cal | backs: ['open', 'checkUser', 'handleSideViews',
" handl eMai nVi ew],
s

After this change, the Y. eZConf . Li st Vi ewSer vi ce is used when a user reaches the eZConf Li
st route.

Fetching Locations from the view service

A view service is responsible for fetching data so it can be rendered. For a given route, the view
service is instantiated the first time the route is accessed and then the same instance is reused. On
that instance, the _| oad method is automatically called. This is where the loading logic should be
in most cases. This method also receives a callback as its only parameter. This callback function
should be called once the loading is finished. Typically, a view service will use the JavaScript
REST Client to request eZ Platform REST API. To do that, a JavaScript REST Client instance is
available in the capi attribute of the view service.

In this tutorial, we want to display the Content in a flat list and filter this list by Content Types. For
now, let's fetch everything; to do that, the view service will create a REST view to search for every
Location in the repository:

http://ezsystems.github.io/javascript-rest-client/
http://ezsystems.github.io/javascript-rest-client/
https://doc.ez.no/display/DEVELOPER/REST+API+Guide

ezconf-listviewservice.js

YUl . add(' ezconf-listviewservice', function (Y) {
Y. nanespace(' eZConf"');

Y. eZConf . Li st Vi ewServi ce =
Y. Base. creat e(' ezconf Li st Vi ewService', Y.eZ ViewService
(1. {
initializer: function () {
consol e.l og("Hey, |I'mthe ListViewService");

b

/1 _load is automatically called when the view
service is configured for
/'l a route. callback shoul d be executed when
everything is finished
_load: function (callback) {
var capi = this.get('capi'), // REST AP
JavaScript client
content Service =
capi . get Cont ent Servi ce(),
query =
cont ent Servi ce. newVi ewCreat eStruct (' ezconf-1ist'
' LocationQuery');

/'l searching for "everything"
query. body. Vi eM nput . Locati onQuery.Criteria
= {SubtreeCriterion: "/1/"};
cont ent Servi ce. creat eVi ew(query,
Y. bi nd(function (err, response) {
/'l parsing the response and storing the
location list in the "location" attribute
var | ocations;

| ocations =
Y. Array. map(response. docunent. Vi ew. Resul t. searchHi ts. sea
rchH t, function (hit) {
var loc = new Y.eZ. Location({id:
hit.val ue. Location._href});

| oc. | oadFrontHash(hit.val ue. Location);
return | oc;

1)
this.set('locations', |ocations);
cal | back();
}, this));
}
boA
ATTRS: {
| ocations: {
val ue: [],
}
}

1)
1)

At this point, if you refresh the PlatformUI application and follow the link added in the previous step,
you should see a new REST API request to / api / ezp/ v2/ vi ews in the network panel of the
browser:

& O Elements Console Sources Network Timeline Profiles Resources Audits PageSpeed React
® O | m Y | view IE = Preserve log [Disable cache | No throttling A
Hide dataURLs All G455 JS €SS Img Media Font Doc WS Other
Name . .
Path X Headers Preview Response Cookies Timing
2 ¥ {View: {_media-type: "application/vnd.ez.api.Viewsjson", _href: "/api/ezp/v2/vieWws/ezconf..
L fapi/ VView: { media-type: "application/vnd.ez.api.Viewsjson", href: "/apifezp/v2/views/ezconf
B Query: { media-type: "application/vnd.ez.api.Query+json"}
"43 wResult: { media-type: "application/vnd.ez.api.ViewResult+json®, href: "/api/ezp/v2/vie
[href: "/api/ezp/v2/vis zcont-list/re g
= media-type: "application/vnd.ez.api.ViewResult+json”
J views count: 189
Japifezp/v2 maxScore: null
¥ searchHits: {searchHit: [{ media-type: "application/und.ez.api.searchHit+json", scor
¥ searchHit: [{ media-type: "applicationfvnd.ez.api.searchHit+jsan®, score: &, _inde:
»0: { media-type: "application/nd.ez.api.searchHit+json", score: 0, index: 0,.}
{_media-type: "application/vnd.ez.api.searchHit+json', score: B, _index: B,.}
{_media-type: "application/vnd.ez.api.searchHit+iso score: 0, _index: 0,.}
{ media-type: "application/vad.ez.api.searchHit+jso score: 0, index: 0,.}
: { media-type: "application/vnd.ez.api.searchHit+jso score: 0, index: 0.}
: { media-type: "application/vd.ez.api.searchHit+]so score: 0, _index: 0,.}
{ media-type: "application/vad.ez.api.searchHit+]so score: B, _index: 0,.}
{_media-type: "application/vad.ez.api.searchHit+iso score: B, _index: B,.}
{_media-type: "application/vnd.ez.api.searchHit+iso score: 0, _index: ..}
{_media-type: "application/vad.ez.api.searchHit+iso score: 0, _index: 0,.}
i { media-type: "application/vnd.ez.api.searchHit+json”, score: B, index: 8
: {_media-type: "application/vnd.ez.api.searchHit+json”, score: B, _index: 8,.]
: { media-type: "application/vnd.ez.api.searchHit+json”, score: B, _index: ,.]
: { media-type: "application/vnd.ez.api.searchHit+json", score: 0, _index: 9,.]
: {_media-type: "application/vnd.ez.api.searchHit+json”, _score: 0, _index: 9,.]
: {_media-type: "application/vnd.ez.api.searchHit+json”, _score: 0, _index: 9,.]
i { media-type: "application/vnd.ez.api.searchHit+json”, score: 0, _index: ,.]
: {_media-type: "application/vnd.ez.api.searchHit+json”, score: B, _index: 8,.]
: { media-type: "application/vnd.ez.api.searchHit+json”, score: B, _index: ,.]
: {_media-type: "application/vnd.ez.api.searchHit+json", score: B, _index: 8,.]
¢ {_media-type: "application/vnd.ez.api.searchHit+json", _score: 0, _index: ,.]
: {_media-type: "application/vnd.ez.api.searchHit+json”, _score: 0, _index: ,.]
i { media-type: "application/vnd.ez.api.searchHit+json”, score: 0, _index: ,.]
i { media-type: "application/vnd.ez.api.searchHit+json”, score: B, _index: 8,.]
: { media-type: "application/vnd.ez.api.searchHit+json”, score: B, _index: ,.]
: 0.0043601174926758
dout: false
"fapifezp/v2/views/ezconf-list"
media-type: "application/vnd.ez.api.Viewsjson”
3requests | 139KB transferred identifier: tezconf-List?

The Locations are built in the application but not yet used anywhere.

Passing the Location to the view

Now that we have the Locations, we have to give them to the view. For that, we have to implement
the _get Vi ewPar arret er s method in the view service. This method is automatically called when

view service loading is finished, it should return an object that will be used as a configuration object
for the main view.

In our case, we just want to give the Location list to the view, so the _get Vi ewPar anet er s metho
d is quite simple:

_getViewParameters of the view service

_get Vi ewParaneters: function () {
return {
| ocations: this.get('locations'),
b
b

With that code, the view will receive the Location list as an attribute under the name | ocat i ons.

Why implement _load and _getViewParameters and not load and
getViewParameters?

When implementing a custom view service, you should always implement the protected
_l oad and _get Vi ewPar anet er s methods, not their public counterparts | oad and ge
t Vi ewPar anet er s. By implementing the protected versions, you keep the opportunity
for a developer to write a plugin to enhance your view service.

View to display a list of Location

The view now receives the Location list in the | ocat i ons attribute so we have to change the view
to take that into account. For now, let's change it to just display the Location it receives as an
unordered HTML list of links to those Locations. To do that, we have to:

https://doc.ez.no/display/DEVELOPER/Configure+the+navigation

1. Declare the | ocat i ons attribute in the view
2. Give that list to the template in a form it can understand
3. Update the template to generate the list

Point 2 is required because Handlebars is not able to understand the complex model objects
generated by YUI. So we have to transform those complex object into plain JavaScript objects.
After doing the changes in steps 1 and 2, the view looks like this:

ezconf-listview.js

YUl . add(' ezconf-listview, function (Y) {
Y. nanespace(' eZConf');

Y. eZConf. ListView = Y. Base. create(' ezconfListView
Y. eZ. Tenpl at eBasedView, [], {
initializer: function () {
console.log("Hey, I'mthe list view');

b

render: function () {
this.get('container').set HTM(
this.tenpl ate({
| ocations:
this._getJsonifiedLocations(),
})
);
return this;

b

_getJsoni fiedLocations: function () {
/1l to get usable objects in the tenplate
return Y. Array. map(this.get('locations'),
function (loc) {
return [oc.toJSON();

s

H

oA

ATTRS: {

| ocations: {
value: [],

}

}

1)
1)

Then the template has to be changed to something like:

ezconflistview.hbt

<hl class="ezconf-list-title">List view/hl>

<ul class="ezconf-list">
{{#each | ocations}}
<a href="{{path 'viewLocation' id=id
| anguageCode=cont ent | nf 0. mai nLanguageCode} } " >{{
contentlnfo.name }}</1i>
{{/ each}}

PlatformUI provides a pat h template helper that allows you to generate a route URL in PlatformUl.
It expects a route name and the route parameters.

Results

The resulting code can be beeninthe 6_1_1i st_cl i ent tag on GitHub, this step
result can also be viewed as a diff between tags 5_navi gationand 6_1_|ist_clien
t.

The rest of this tutorial is focused on the server side rendering strategy. Completing the
browser side rendering strategy to get the expected features is left as an exercise.

Server side rendering

In this case a part of the rendering is delegated to the server. When building a PlatformUI page this
way, the application will just do one or more AJAX request(s) and inject the result in the Ul. The
PlatformUl Admin part is built this way. To be easily usable in the JavaScript application, the server
response has to be structured so that the application can retrieve and set the page title, the
potential notifications to issue and the actual page content. This is done by generating an HTML
fragment, in the following way:

Example of server side response

<div data-nane="title">Title to set in the
appl i cation</div>
<di v data-name="htmnl ">
<p>Page content</p>
</ di v>
<ul data-nane="notification">
<li data-state="done">l"ma "done" notification to
display in the application</I|i>
</ ul >

View service to fetch an HTML fragment

Minimal view service

In the case, the minimal view service is exactly the same as the one produced in the previous
Minimal view service paragraph.

Configure the route to use the view service

https://github.com/ezsystems/ExtendingPlatformUIConferenceBundle/releases/tag/6_1_list_client
https://github.com/ezsystems/ExtendingPlatformUIConferenceBundle/compare/5_navigation...6_1_list_client
https://github.com/ezsystems/ExtendingPlatformUIConferenceBundle/compare/5_navigation...6_1_list_client

The eZConfList route also has to be configured exactly in the same way as in the previous
Configure the route to use the view service paragraph.

Generate the HTML fragment server side

This will be done by a Symfony Controller that will use the Search Service and a Twig template to
generate the HTML code. As you can see in this Github commit, it's a very basic Symfony
Controller that extends EzSyst ens\ Pl at f or nJl Bundl e\ Control |l er\ Controller.

Extending EzSyst ens\ Pl at f or mJl Bundl e\ Control | er\ Control | er is not strictly
required. By doing that, the actions provided by the controller are automatically restricted
to authenticated users. This base controller also provides the base API to handle
notifications if needed.

To learn how to write Symfony controllers, please read the Symfony Controller
documentation.

Thel i st actionin Li st Control | er uses the following Twig template:

list.html.twig

{% extends "eZPl atformJ Bundl e:: pj ax_admin. htm . tw g" %

{% bl ock header _title %
<hl class="ezconf-list-title">List view/hl>
{% endbl ock %

{% bl ock content %
<ul class="ezconf-list">
{%for value in results.searchH ts %
{{ val ue. val ue(bj ect. cont ent | nf 0. nane
i<la></1i>
{% endf or %
</ ul >
{% endbl ock %

{% bl ock title 9% List{% endbl ock %

Again, it's a quite a regular template but to ease the generation of the expected structured HTML
fragment, this template extends eZPI at f or mJl Bundl e: : pj ax_admi n. html . twi g and
redefines a few blocks, the main one being cont ent where the actual page content is supposed to
be generated.

Update the view service to fetch the generated HTML fragment

We now have a Symfony Controller able to generate our Location list but this list is not yet
available in the application. As in Fetching Locations from the view service and Passing the
Location to the view, we have to add the code in the view service. But in the case of a server side
rendering, we can reuse Y. eZ. Ser ver Si deVi ewSer vi ce which provides the base API to parse
an HTML fragment which also provides a ready to use _get Vi ewPar anet er s method. All we
have to do then is to implement the loading logic in _| oad:

https://github.com/ezsystems/ExtendingPlatformUIConferenceBundle/commit/01c43cee899e295109060ab89a7ea705e8171cd0#diff-2e1a19129e23e2d757512a5da45ffa54R1
https://github.com/ezsystems/PlatformUIBundle/blob/master/Resources/views/pjax_admin.html.twig
http://doc.ez.no#Buildthecontentlist-PassingtheLocationtotheview
http://doc.ez.no#Buildthecontentlist-PassingtheLocationtotheview
http://symfony.com/doc/current/book/controller.html
http://symfony.com/doc/current/book/controller.html

ezconf-listviewservice.js

YUl . add(' ezconf-listviewservice', function (Y) {
Y. nanespace(' eZConf"');

Y. eZConf . Li st Vi ewServi ce =
Y. Base. creat e(' ezconf Li st Vi ewServi ce',
Y. eZ. Server Si deVi ewService, [], {
initializer: function () {
consol e.l og("Hey, |I'mthe ListViewService");

b

_load: function (callback) {
var uri = this.get('app').get('api Root') +
"list';

Y.io(uri, { // YU helper to do AJAX
request, see http://yuilibrary.con yui/docs/iol
net hod: ' GET',
on: {
success: function (tld, response) {
this. _parseResponse(response);
/'l provided by Y.eZ ServerSi deVi ewServi ce
cal | back(this);

b

failure: this. handl eLoadFailure, //

provi ded by Y.eZ. ServerSi deVi ewServi ce

},

context: this,

s
8
1)

1

The resulting _| oad method will just do an AJAX request to the action provided by our Symfony
controller.

At this point, if you refresh your browser, nothing should have changed but you should see the
AJAX request in the network panel of your browser.

& O Elements Console Sources Network Timeline Profiles Resources Audits PageSpeed React

v

® O | w7 | view IE = Preserve log Disable cache | No throttling

Hide dataURLs All E4ES JS €SS Img Media Font Doc WS Other

X Headers Preview Response Cookies Timing

1

2| <!-. START EzSystemsExtendingPlatformUIConferenceBundle:List:list.html.twig -
4 <l-. START eZPlatfornUIBundle: :pjax_admin.html.twig - -=

5

6 <div data-name="title">List</div>

8| <div data-name="html">

3| <header class="ez-page-header"s

18

11 <hl class="ezconf-list-title’sList views/hl>

12| </header>

13

13

15

16

17

18

19 dministrator User</as

26 edia</az</1i>

21 nonymous Users</as</11>

22 tup</Lix

23 mages</ 11>

24 Files</a=

25 ultimedias/as</1is

2 ommon INI settings</as
3requests | 8.1 KB transferred 6 ! hr mon INL < gs</a=</ 11

View to handle the server side generated code

Change the view to be server side view

To have a visual change, we now have to change the Li st Vi ewto be a server side view. This
operations involves removing some code added in the Define a View step. Basically, the View does
not need any template but it will inherit from Y. eZ. Ser ver Si deVi ew. As a result, the view
module definition becomes:

View module definition

ezconf-1istview
requi res: ['ez-serversideview]

pat h:
%ext endi ng_pl atformui . public_dir%js/view/ezconf-listvi
ew. s

And the View component also has to be simplified to:

ezconf-listview.js

YUl . add("' ezconf-listview, function (Y) {
Y. nanespace(' eZConf"');

Y. eZConf . Li st View = Y. Base. create(' ezconfListView,
Y. eZ. ServerSideView, [], {
initializer: function () {
console.log("Hey, I'mthe list view');
this.containerTenplate = '<div
cl ass="ez-view ezconflistview'/>"; // make sure we keep
the sanme class on the container
H
1)
1)

At this point, you should see the same list as the one that was generated in Browser side rendering
section. The only difference lies in the non-working links being generated in the server side
solution.

Navigating in the app from the view

There are several ways to fix the link issue. In this step we are going to add some metadata to the
generated HTML links, then we'll change the view to recognize the enhanced links and finally we'll
change the server side view to achieve the navigation.

The server side code has no knowledge of the JavaScript application routing mechanism as a
result, it can not directly generate any PlatformUl Application URI, but we know while generating
the HTML fragment that we want each link to allow the navigation to the vi ewlL.ocat i on route for
the Location being displayed. We can then change the Twig template to add the necessary
metadata on each link so that the application has a way of guessing where the user is supposed to
go when clicking on the link:

https://doc.ez.no/display/DEVELOPER/Define+a+View

"content" block in the Twig template

{% bl ock content %
<ul class="ezconf-list">
{%for value in results.searchH ts %
<a class="ezconf-list-location" href=""
dat a- r out e- nane="vi ewLocat i on"
data-route-id="{{
pat h(' ezpublish_rest_| oadLocation', {locationPath:
val ue. val ueCbj ect.pathString|trim'/')}) }}"
dat a- r out e- | anguageCode="{{
val ue. val uebj ect . cont ent | nf 0. mai nLanguageCode }}"
>{{ val ue. val uethj ect . cont ent | nf 0. nanme
Yi<la>
{% endfor %
</ ul >
{% endbl ock %

For each link we are basically saying to the application that the user should directed to the vi ewLo
cat i on route for the given Location id and the given language code.

In PlatformUI code, the Locations, Content items and Content Types are identified by
their REST id, that is the REST resource URL which allows you to fetch the object in the
REST API. That's why we are using the pat h Twig template function to build the
Location id.

Then we have to change the view to add a special behavior when the user clicks on them. The
view can not directly trigger the navigation to the expected route. So in this case, we are firing an
application level event with all the data we have on the link and we'll let the view service handle this
application level event to take the user to the expected page. So, we have to configure our view to
recognize the click on the links and to fire the navi gat eTo custom event:

ezconf-listview.js

YU . add(' ezconf-listview, function (Y) {
Y. nanespace(' eZConf"');

Y. eZConf . ListView = Y. Base. create(' ezconfListView

Y.eZ. ServerSideView, [], {

/1 this is YU View nechanic to subscribe to DOM
events (click, submt,

/1 ...) and synthetic event (sone custom event
provided by YU) Iike

/1 '"tap' here.

events: {

".ezconf-list-location': {
/1 tap is "fast click' (touch friendly)

"tap': ' _navigateTolLocation
}
b
initializer: function () {
console.log("Hey, I'mthe list view');
this.containerTenplate = '<div
cl ass="ez-viewezconflistview'/>'

b

_navi gateToLocation: function (e) {
var link = e.target;

e.preventDefaul t(); // don't want the norma
I'i nk behavi or

/1 tell the view service we want to navigate
sonmewher e
/1 it's a customevent that will be bubble
up to the view service
/1 (and the app)
/'l the second paraneter is the data to add
in the event facade, this
/1 can be used by any event handl er function
bound to this event.
this.fire(' navigateTo', {
rout eNane: |ink.getData('route-nane'),
rout ePar ans: {
id: link.getData('route-id"),
| anguageCode
Ii nk. get Dat a(' rout e-| anguagecode'),
}
1)
I
s
)

The DOM event handling is one of the main YUI View features. It is documented in the
YUI View guide.

http://yuilibrary.com/yui/docs/view/#handling-dom-events
http://yuilibrary.com/yui/docs/view/#handling-dom-events

Now the click on the Location link is transformed in a navi gat eTo event, we have to subscribe to
that event in the view service to trigger the expected navigation:

ezconf-listviewservice.js

YUl . add(' ezconf-listviewservice', function (VY) {
Y. nanespace(' eZConf"');

Y. eZConf . Li st Vi ewServi ce =
Y. Base. creat e(' ezconf Li st Vi enService',
Y. eZ. Server Si deVi ewService, [], {
initializer: function () {
consol e.l og("Hey, |I'mthe ListViewService");

/'l we catch the “navigateTo event no matter
fromwhere it cones
/'l when bubbling, the event is prefixed with
t he name of the
/'l component which fired the event first.
/1 so in this case we could also wite
/1 this.on('ezconflistview navigateTo',
function (e) {});
/1 “e is the event facade. It contains
various informations about
/1l the event and if any the custom data
passed to fire().
this.on('*:navigateTo', function (e) {
this.get('app').navigateTo(
e. rout eNane,
e. rout ePar ans
)
s
},

_load: function (callback) {
/1 [...] skip to keep the exanple short
},
1)
1)

With that in place and after a refresh, the Location list should allow you to the navigate to the
expected Location in PlatformUl.

Application level events

PlatformUl uses a lot of custom application level events thanks to the EventTarget YUI
component. Those events are very similar to DOM events but they are attached to the
application components instead of the DOM elements. Like for DOM events, there is a
bubbling mechanism. For instance, here the view is firing an event and unless the
propagation of the event is stopped, it will bubble to the view service and then to the
application. The event basically follows the components tree until the application. An
application level event is way for a deeply nested component to communicate with
a higher level component.

Results and next step
The resulting code can be seeninthe 6_2_| i st _server tag on GitHub, this step result
can also be viewed as a diff between tags 5_navi gationand6_2_|ist_server.

The next step is then to add the pagination.

http://yuilibrary.com/yui/docs/event-custom/
http://yuilibrary.com/yui/docs/event-custom/
http://yuilibrary.com/yui/docs/event/
http://yuilibrary.com/yui/docs/event-custom/#bubbling
http://yuilibrary.com/yui/docs/event-custom/#bubbling
https://doc.ez.no/display/DEVELOPER/Extending+eZ+Platform
https://github.com/ezsystems/ExtendingPlatformUIConferenceBundle/releases/tag/6_2_list_server
https://github.com/ezsystems/ExtendingPlatformUIConferenceBundle/compare/5_navigation...6_2_list_server
https://doc.ez.no/display/DEVELOPER/Paginate+results

	Build the content list

