
Build the content list
Two ways to generate pages in PlatformUI

As written in the , pages in PlatformUI can be generated either byPlatformUI technical introduction
the browser based on the REST API (or any other API) responses or by doing part of the rendering
on the server side for instance with some Twig templates called by a Symfony controller. Both
options are perfectly valid and choosing one or the other is mainly a matter of taste. This step will
examine both strategies even if the later steps will be based on the server-side rendering.

Browser side rendering

In this case, the browser uses the REST API to fetch the necessary objects/structures and then the
logic of transforming that to an HTML page is written in JavaScript and executed by the browser.

View service to fetch the Location list

Minimal view service

The first thing to do is to create a view service. A view service is a component extending Y.eZ.Vi
. So we first need to declare and create a module and then this module will create theewService

minimal view service class:

ezconf-listviewservice:
 requires: ['ez-viewservice']
 path:
%extending_platformui.public_dir%/js/views/services/ezco
nf-listviewservice.js

Then in we can write the minimal view service:ezconf-listviewservice.js

YUI.add('ezconf-listviewservice', function (Y) {
 Y.namespace('eZConf');

 Y.eZConf.ListViewService =
Y.Base.create('ezconfListViewService', Y.eZ.ViewService,
[], {
 initializer: function () {
 console.log("Hey, I'm the ListViewService");
 },
 });
});

This is the minimal view service, it only writes a "hello world" message in the console when
instantiated but for now it's not used anywhere in the application.

Configure the route to use the view service

To really use our view service in the application, we have to change the route so that the
PlatformUI application instantiates and uses the view service when building the page. To do that,

Tutorial path

yui.yml

Minimal ListViewService

https://doc.ez.no/display/DEVELOPER/Extending+eZ+Platform

we have to add the route property to hold the constructor function of the view service soservice
the application plugin that adds the route will also have to require the ezconf-listviewservice
module:

 ezconf-listapplugin:
 requires: ['ez-pluginregistry', 'plugin', 'base',
'ezconf-listview', 'ezconf-listviewservice'] # the view
module has been added
 dependencyOf: ['ez-platformuiapp']

After doing that, becomes available in the application plugin codeY.eZConf.ListViewService
and we can change the route to:eZConfList

app.route({
 name: "eZConfList",
 path: "/ezconf/list",
 view: "ezconfListView",
 service: Y.eZConf.ListViewService, // constructor
function to use to instantiate the view service
 sideViews: {'navigationHub': true, 'discoveryBar':
false},
 callbacks: ['open', 'checkUser', 'handleSideViews',
'handleMainView'],
});

After this change, the is used when a user reaches the Y.eZConf.ListViewService eZConfLi
 route.st

Fetching Locations from the view service

A view service is responsible for fetching data so it can be rendered. For a given route, the view
service is instantiated the first time the route is accessed and then the same instance is reused. On
that instance, the method is automatically called. This is where the loading logic should be_load
in most cases. This method also receives a callback as its only parameter. This callback function
should be called once the loading is finished. Typically, a view service will use the JavaScript

 to request . To do that, a JavaScript REST Client instance isREST Client eZ Platform REST API
available in the attribute of the view service.capi

In this tutorial, we want to display the Content in a flat list and filter this list by Content Types. For
now, let's fetch everything; to do that, the view service will create a REST view to search for every
Location in the repository:

yui.yml

Creating a route with a view service

http://ezsystems.github.io/javascript-rest-client/
http://ezsystems.github.io/javascript-rest-client/
https://doc.ez.no/display/DEVELOPER/REST+API+Guide

YUI.add('ezconf-listviewservice', function (Y) {
 Y.namespace('eZConf');

 Y.eZConf.ListViewService =
Y.Base.create('ezconfListViewService', Y.eZ.ViewService,
[], {
 initializer: function () {
 console.log("Hey, I'm the ListViewService");
 },

 // _load is automatically called when the view
service is configured for
 // a route. callback should be executed when
everything is finished
 _load: function (callback) {
 var capi = this.get('capi'), // REST API
JavaScript client
 contentService =
capi.getContentService(),
 query =
contentService.newViewCreateStruct('ezconf-list',
'LocationQuery');

 // searching for "everything"
 query.body.ViewInput.LocationQuery.Criteria
= {SubtreeCriterion: "/1/"};
 contentService.createView(query,
Y.bind(function (err, response) {
 // parsing the response and storing the
location list in the "location" attribute
 var locations;

 locations =
Y.Array.map(response.document.View.Result.searchHits.sea
rchHit, function (hit) {
 var loc = new Y.eZ.Location({id:
hit.value.Location._href});

loc.loadFromHash(hit.value.Location);
 return loc;
 });
 this.set('locations', locations);
 callback();
 }, this));
 },
 }, {
 ATTRS: {
 locations: {
 value: [],
 }
 }
 });
});

ezconf-listviewservice.js

At this point, if you refresh the PlatformUI application and follow the link added ,in the previous step
you should see a new REST API request to in the network panel of the/api/ezp/v2/views
browser:

The Locations are built in the application but not yet used anywhere.

Passing the Location to the view

Now that we have the Locations, we have to give them to the view. For that, we have to implement
the method in the view service. This method is automatically called when_getViewParameters
view service loading is finished, it should return an object that will be used as a configuration object
for the main view.

In our case, we just want to give the Location list to the view, so the metho_getViewParameters
d is quite simple:

_getViewParameters: function () {
 return {
 locations: this.get('locations'),
 };
},

With that code, the view will receive the Location list as an attribute under the name .locations

View to display a list of Location

The view now receives the Location list in the attribute so we have to change the viewlocations
to take that into account. For now, let's change it to just display the Location it receives as an
unordered HTML list of links to those Locations. To do that, we have to:

_getViewParameters of the view service

Why implement _load and _getViewParameters and not load and
getViewParameters?
When implementing a custom view service, you should always implement the protected

 and methods, not their public counterparts and _load _getViewParameters load ge
. By implementing the protected versions, you keep the opportunitytViewParameters

for a developer to write a plugin to enhance your view service.

https://doc.ez.no/display/DEVELOPER/Configure+the+navigation

1.
2.
3.

Declare the attribute in the viewlocations
Give that list to the template in a form it can understand
Update the template to generate the list

Point 2 is required because Handlebars is not able to understand the complex model objects
generated by YUI. So we have to transform those complex object into plain JavaScript objects.
After doing the changes in steps 1 and 2, the view looks like this:

YUI.add('ezconf-listview', function (Y) {
 Y.namespace('eZConf');

 Y.eZConf.ListView = Y.Base.create('ezconfListView',
Y.eZ.TemplateBasedView, [], {
 initializer: function () {
 console.log("Hey, I'm the list view");
 },

 render: function () {
 this.get('container').setHTML(
 this.template({
 locations:
this._getJsonifiedLocations(),
 })
);
 return this;
 },

 _getJsonifiedLocations: function () {
 // to get usable objects in the template
 return Y.Array.map(this.get('locations'),
function (loc) {
 return loc.toJSON();
 });
 },
 }, {
 ATTRS: {
 locations: {
 value: [],
 }
 }
 });
});

Then the template has to be changed to something like:

ezconf-listview.js

<h1 class="ezconf-list-title">List view</h1>

<ul class="ezconf-list">
{{#each locations}}
 <a href="{{path 'viewLocation' id=id
languageCode=contentInfo.mainLanguageCode}}">{{
contentInfo.name }}
{{/each}}

PlatformUI provides a template helper that allows you to generate a route URL in PlatformUI.path
It expects a route name and the route parameters.

Server side rendering

In this case a part of the rendering is delegated to the server. When building a PlatformUI page this
way, the application will just do one or more AJAX request(s) and inject the result in the UI. The
PlatformUI is built this way. To be easily usable in the JavaScript application, the serverAdmin part
response has to be structured so that the application can retrieve and set the page title, the
potential notifications to issue and the actual page content. This is done by generating an HTML
fragment, in the following way:

<div data-name="title">Title to set in the
application</div>
<div data-name="html">
 <p>Page content</p>
</div>
<ul data-name="notification">
 <li data-state="done">I'm a "done" notification to
display in the application

View service to fetch an HTML fragment

Minimal view service

In the case, the minimal view service is exactly the same as the one produced in the previous
.Minimal view service paragraph

Configure the route to use the view service

ezconflistview.hbt

Results
The resulting code can be been in , this stepthe tag on GitHub6_1_list_client
result can also be viewed as a diff between tags and 5_navigation 6_1_list_clien

.t

The rest of this tutorial is focused on the server side rendering strategy. Completing the
browser side rendering strategy to get the expected features is left as an exercise.

Example of server side response

https://github.com/ezsystems/ExtendingPlatformUIConferenceBundle/releases/tag/6_1_list_client
https://github.com/ezsystems/ExtendingPlatformUIConferenceBundle/compare/5_navigation...6_1_list_client
https://github.com/ezsystems/ExtendingPlatformUIConferenceBundle/compare/5_navigation...6_1_list_client

The eZConfList route also has to be configured exactly in the same way as in the previous
.Configure the route to use the view service paragraph

Generate the HTML fragment server side

This will be done by a Symfony Controller that will use the Search Service and a Twig template to
generate the HTML code. As you can see in , it's a very basic Symfonythis Github commit
Controller that extends .EzSystems\PlatformUIBundle\Controller\Controller

The action in uses the following Twig template:list ListController

{% extends "eZPlatformUIBundle::pjax_admin.html.twig" %}

{% block header_title %}
 <h1 class="ezconf-list-title">List view</h1>
{% endblock %}

{% block content %}
<ul class="ezconf-list">
{% for value in results.searchHits %}
 {{ value.valueObject.contentInfo.name
}}
{% endfor %}

{% endblock %}

{% block title %}List{% endblock %}

Again, it's a quite a regular template but to ease the generation of the expected structured HTML
fragment, this template extends and eZPlatformUIBundle::pjax_admin.html.twig
redefines a few blocks, the main one being where the actual page content is supposed tocontent
be generated.

Update the view service to fetch the generated HTML fragment

We now have a Symfony Controller able to generate our Location list but this list is not yet
available in the application. As in and Fetching Locations from the view service Passing the

, we have to add the code in the view service. But in the case of a server sideLocation to the view
rendering, we can reuse . .Y eZ which provides the base API to parseServerSideViewService
an HTML fragment which also provides a ready to use method. All we_getViewParameters
have to do then is to implement the loading logic in :_load

Extending is not strictlyEzSystems\PlatformUIBundle\Controller\Controller
required. By doing that, the actions provided by the controller are automatically restricted
to authenticated users. This base controller also provides the base API to handle
notifications if needed.

To learn how to write Symfony controllers, please read the Symfony Controller
.documentation

list.html.twig

https://github.com/ezsystems/ExtendingPlatformUIConferenceBundle/commit/01c43cee899e295109060ab89a7ea705e8171cd0#diff-2e1a19129e23e2d757512a5da45ffa54R1
https://github.com/ezsystems/PlatformUIBundle/blob/master/Resources/views/pjax_admin.html.twig
http://doc.ez.no#Buildthecontentlist-PassingtheLocationtotheview
http://doc.ez.no#Buildthecontentlist-PassingtheLocationtotheview
http://symfony.com/doc/current/book/controller.html
http://symfony.com/doc/current/book/controller.html

YUI.add('ezconf-listviewservice', function (Y) {
 Y.namespace('eZConf');

 Y.eZConf.ListViewService =
Y.Base.create('ezconfListViewService',
Y.eZ.ServerSideViewService, [], {
 initializer: function () {
 console.log("Hey, I'm the ListViewService");
 },

 _load: function (callback) {
 var uri = this.get('app').get('apiRoot') +
'list';

 Y.io(uri, { // YUI helper to do AJAX
request, see http://yuilibrary.com/yui/docs/io/
 method: 'GET',
 on: {
 success: function (tId, response) {
 this._parseResponse(response);
// provided by Y.eZ.ServerSideViewService
 callback(this);
 },
 failure: this._handleLoadFailure, //
provided by Y.eZ.ServerSideViewService
 },
 context: this,
 });
 },
 });
});

The resulting method will just do an AJAX request to the action provided by our Symfony_load
controller.

At this point, if you refresh your browser, nothing should have changed but you should see the
AJAX request in the network panel of your browser.

View to handle the server side generated code

ezconf-listviewservice.js

Change the view to be server side view

To have a visual change, we now have to change the to be a server side view. ThisListView
operations involves removing some code added in . Basically, the View doesthe Define a View step
not need any template but it will inherit from . As a result, the viewY.eZ.ServerSideView
module definition becomes:

ezconf-listview:
 requires: ['ez-serversideview']
 path:
%extending_platformui.public_dir%/js/views/ezconf-listvi
ew.js

And the View component also has to be simplified to:

YUI.add('ezconf-listview', function (Y) {
 Y.namespace('eZConf');

 Y.eZConf.ListView = Y.Base.create('ezconfListView',
Y.eZ.ServerSideView, [], {
 initializer: function () {
 console.log("Hey, I'm the list view");
 this.containerTemplate = '<div
class="ez-view-ezconflistview"/>'; // make sure we keep
the same class on the container
 },
 });
});

At this point, you should see the same list as the one that was generated in Browser side rendering
section. The only difference lies in the non-working links being generated in the server side
solution.

Navigating in the app from the view

There are several ways to fix the link issue. In this step we are going to add some metadata to the
generated HTML links, then we'll change the view to recognize the enhanced links and finally we'll
change the server side view to achieve the navigation.

The server side code has no knowledge of the JavaScript application routing mechanism as a
result, it can not directly generate any PlatformUI Application URI, but we know while generating
the HTML fragment that we want each link to allow the navigation to the route forviewLocation
the Location being displayed. We can then change the Twig template to add the necessary
metadata on each link so that the application has a way of guessing where the user is supposed to
go when clicking on the link:

View module definition

ezconf-listview.js

https://doc.ez.no/display/DEVELOPER/Define+a+View

{% block content %}
<ul class="ezconf-list">
{% for value in results.searchHits %}
 <a class="ezconf-list-location" href=""
 data-route-name="viewLocation"
 data-route-id="{{
path('ezpublish_rest_loadLocation', {locationPath:
value.valueObject.pathString|trim('/')}) }}"
 data-route-languageCode="{{
value.valueObject.contentInfo.mainLanguageCode }}"
 >{{ value.valueObject.contentInfo.name
}}
{% endfor %}

{% endblock %}

For each link we are basically saying to the application that the user should directed to the viewLo
 route for the given Location id and the given language code.cation

Then we have to change the view to add a special behavior when the user clicks on them. The
view can not directly trigger the navigation to the expected route. So in this case, we are firing an
application level event with all the data we have on the link and we'll let the view service handle this
application level event to take the user to the expected page. So, we have to configure our view to
recognize the click on the links and to fire the custom event:navigateTo

"content" block in the Twig template

In PlatformUI code, the Locations, Content items and Content Types are identified by
their REST id, that is the REST resource URL which allows you to fetch the object in the
REST API. That's why we are using the Twig template function to build thepath
Location id.

YUI.add('ezconf-listview', function (Y) {
 Y.namespace('eZConf');

 Y.eZConf.ListView = Y.Base.create('ezconfListView',
Y.eZ.ServerSideView, [], {
 // this is YUI View mechanic to subscribe to DOM
events (click, submit,
 // ...) and synthetic event (some custom event
provided by YUI) like
 // 'tap' here.
 events: {
 '.ezconf-list-location': {
 // tap is 'fast click' (touch friendly)
 'tap': '_navigateToLocation'
 }
 },

 initializer: function () {
 console.log("Hey, I'm the list view");
 this.containerTemplate = '<div
class="ez-view-ezconflistview"/>';
 },

 _navigateToLocation: function (e) {
 var link = e.target;

 e.preventDefault(); // don't want the normal
link behavior

 // tell the view service we want to navigate
somewhere
 // it's a custom event that will be bubble
up to the view service
 // (and the app)
 // the second parameter is the data to add
in the event facade, this
 // can be used by any event handler function
bound to this event.
 this.fire('navigateTo', {
 routeName: link.getData('route-name'),
 routeParams: {
 id: link.getData('route-id'),
 languageCode:
link.getData('route-languagecode'),
 }
 });
 },
 });
});

ezconf-listview.js

The DOM event handling is one of the main YUI View features. It is documented in the
.YUI View guide

http://yuilibrary.com/yui/docs/view/#handling-dom-events
http://yuilibrary.com/yui/docs/view/#handling-dom-events

Now the click on the Location link is transformed in a event, we have to subscribe tonavigateTo
that event in the view service to trigger the expected navigation:

YUI.add('ezconf-listviewservice', function (Y) {
 Y.namespace('eZConf');

 Y.eZConf.ListViewService =
Y.Base.create('ezconfListViewService',
Y.eZ.ServerSideViewService, [], {
 initializer: function () {
 console.log("Hey, I'm the ListViewService");

 // we catch the `navigateTo` event no matter
from where it comes
 // when bubbling, the event is prefixed with
the name of the
 // component which fired the event first.
 // so in this case we could also write
 // this.on('ezconflistview:navigateTo',
function (e) {});
 // `e` is the event facade. It contains
various informations about
 // the event and if any the custom data
passed to fire().
 this.on('*:navigateTo', function (e) {
 this.get('app').navigateTo(
 e.routeName,
 e.routeParams
);
 });
 },

 _load: function (callback) {
 // [...] skip to keep the example short
 },
 });
});

With that in place and after a refresh, the Location list should allow you to the navigate to the
expected Location in PlatformUI.

ezconf-listviewservice.js

Application level events
PlatformUI uses a lot of custom application level events thanks to the EventTarget YUI

. Those events are very similar to but they are attached to thecomponent DOM events
application components instead of the DOM elements. Like for DOM events, there is a

. For instance, here the view is firing an event and unless thebubbling mechanism
propagation of the event is stopped, it will bubble to the view service and then to the
application. The event basically follows . the components tree until the application An
application level event is way for a deeply nested component to communicate with
a higher level component.

Results and next step
The resulting code can be seen in , this step resultthe tag on GitHub6_2_list_server
can also be viewed as .a diff between tags and 5_navigation 6_2_list_server

The next step is then .to add the pagination

http://yuilibrary.com/yui/docs/event-custom/
http://yuilibrary.com/yui/docs/event-custom/
http://yuilibrary.com/yui/docs/event/
http://yuilibrary.com/yui/docs/event-custom/#bubbling
http://yuilibrary.com/yui/docs/event-custom/#bubbling
https://doc.ez.no/display/DEVELOPER/Extending+eZ+Platform
https://github.com/ezsystems/ExtendingPlatformUIConferenceBundle/releases/tag/6_2_list_server
https://github.com/ezsystems/ExtendingPlatformUIConferenceBundle/compare/5_navigation...6_2_list_server
https://doc.ez.no/display/DEVELOPER/Paginate+results

	Build the content list

