Field Type API and best practices
Field Type API & best practices

eZ Platform can support arbitrary data to be stored in the fields of a content item. In order to support custom data, besides the standard data
types, a developer needs to create a custom Field Type.

The implementation of a custom Field Type is done based on the Field Type SPI and its interfaces. These can be found under eZ\ Publ i sh\
SPI\ Fi el dType.

In order to provide custom functionality for a Field Type, the SPI interacts with multiple layers of the eZ Platform architecture, as shown in the
following diagram:

Public API

FieldType SPI
A

< Persistence SPI

On the top layer, the Field Type needs to provide conversion from and to a simple PHP hash value to support the REST API. The generated
hash value may only consist of scalar values and hashes. It must not contain objects or arrays with numerical indexes that aren't sequential
and/or don't start with zero.

Below that, the Field Type must support the Public APl implementation (aka Business Layer), regarding:

® Settings definition for FieldDefinitions
® Value creation and validation
® Communication with the Persistence SPI

On the bottom level, a Field Type can additionally hook into the Persistence SPI, in order to store data from a FieldValue in an external
service. Note that all non-standard eZ Publish database tables (e.g. ezur |) are also considered "external storage" from now on.

The following sequence diagram visualizes the process of creating a new Cont ent across all layers, especially focused on the interaction
with a Fi el dType.

Code using Repository SPI\FieldType Repository SPI\Persistence SPI\Persistence SPI\FieldType
Public API ContentService FieldType FieldDefinition Content\Handler Content\SearchHandler FieldStorage

createContent() ol per Field
acceptvalue()

]

validate()

— e getValidatorConf...()
I | —

toPersistencevalue() i|

create() per Field
storeFieldData() J

indexContent()

D —————————

In the next lines/pages, this document explains how to implement a custom Field Type based on the SPI and what is expected from it. As a
code example, please refer to the Url FieldType, which has been implemented as a reference.

Public API interaction

The interaction with the Public API is done through the interface eZ\ Publ i sh\ SPI\ Fi el dType\ Fi el dType. A custom Field Type must
provide an implementation of this interface. In addition, it is considered best practice to provide a value object class for storing the custom
field value provided by the Field Type.

FieldDefinition handling

In order to make use of a custom Field Type, the user must apply it in a eZ\ Publ i sh\ API \ Reposi t or y\ Val ues\ Cont ent Type\ Fi el dD
ef i ni ti on of a custom Content Type. The user may in addition provide settings for the Field Type and a validator configuration. Since the
Public API cannot know anything about these, their handling is delegated to the Field Type itself through the following methods:

get Fi el dTypel dentifier()

Returns a unique identifier for the custom Field Type, which is used to assign the type to a Field Definition. By convention for the
returned type identifier string should be prefixed by a unique shortcut for the vendor (e.g. ez for eZ Systems).

get Setti ngsSchema()

Using this method, the Public API retrieves a schema for the field type settings. A typical setting would e.g. be a default value. The
settings structure defined by this schema is stored in the Fi el dDef i ni ti on. Since it is not possible to define a generic format for
such a schema, the Field Type is free to return any serializable data structure from this method.

get Val i dat or Confi gurati onSchena()

In addition to normal settings, the Field Type should provide a schema settings for it's validation process. The schema describes, what
kind of validation can be performed by the Field Type and which settings the user can specify to these validation methods. For
example, the ezst ri ng type can validate minimum and maximum length of the string. It therefore provides a schema to indicate to the
user that he might specify the corresponding restrictions, when creating a Fi el dDef i ni t i on with this type. Again, the schema does
not underlie any regulations, except for that it must be serializable.

val i dat eFi el dSetti ngs()

Before the Public API stores settings for the Fi el dType in a Fi el dDef i ni ti on, the type is asked to validate the settings (which
were provided by the user). As a result, the Fi el dType must return if the given settings comply to the schema defined by get Setti n
gsSchenm() . val i dat eVal i dat or Confi gurati on() Analogtoval i dat eFi el dSet ti ngs(), this method verifies that the given
validator configuration complies to the schema provided by get Val i dat or Conf i gur ati onSchema() .

It is important to note that while the schema definitions of the Fi el dType maybe both be of arbitrary, serializable format, it is highly
recommended to use a simple hash structure. It is highly recommended to follow the Best practices in order to create future proof schemas.

Note: Since it is not possible to enforce a schema format, the code using a specific Fi el dType must basically know all Fi el dTyp
es it deals with.

This will also apply to all user interfaces and the REST API, which therefore must provide extension points to register handling code
for custom Fi el dType. These extensions are not defined, yet.

Name of the Field Type

If you implement Nameable as an extra service, and register this Service using the tag naneabl e, the method { Fi el dType} Naneabl e- >g
et Fi el dNane() will be used to retrieve the name.

Otherwise the regular { Fi el dType} - >get Nane() method is used.

Example from fieldtype_services.yml

Naneabl e services (for fieldtypes that need advance nane handl i ng)
ezpubl i sh. fiel dType. ezobj ectrel ati on. naneabl e_fi el d:
cl ass: % ezpublish.fiel dType. ezobjectrel ati on. naneabl e_fi el d. cl ass%
argunent s:
- @zpublish. spi.persistence. cache. cont ent Handl er
t ags:
- {nane: ezpublish.fieldType. naneabl e, alias: ezobjectrelation}

Value handling

A field type needs to deal with the custom value format provided by it. In order for the public API to work properly, it delegates working with
such custom field values to the corresponding Field Type. The SPI \ Fi el dType\ Fi el dType interface therefore provides the following

methods:

accept Val ue()

This method is responsible for accepting and converting user input for the field. It checks the input structure it accepts and might build
and return a different structure holding the data. An example would be, that the user just provides an HTTP link as a string, which is
converted to the value object of the Url FieldType. Unlike the Fi el dType\ Val ue constructor, it is perfectly acceptable to make this

method aware of multiple input types (object or primitive, for instance).

Note: The method must assert structural consistency of the value, but must not validate plausibility of the value.

get Enpt yVal ue()

Through settings, the Fi el dType can specify, that the user may define a default value for the Fi el d of the type. If no such default is
provided by the user, the Fi el dType itself is asked for an "empty value" as the final fallback. The value chain for a specific field is
therefore like this, when a Fi el d of the Fi el dType is filled out:

a. Is a value provided by the filling user?
b. Is a default provided by the Fi el dDefi nition?
c. Take the empty value provided by the Fi el dType

val i dat e()

In contrast to accept Val ue() this method validates the plausibility of the given value, based on the Fi el dType settings and
validator configuration, stored in the corresponding Fi el dDef i ni ti on.

Storage conversion

As said above, the value format of a Fi el dType is free form. However, in order to make eZ Publish store the value in it's database, it must
comply to certain rules at storage time. To not restrict the value itself, a Fi el dVal ue must be converted to the storage specific format used
by the Persistence SPI: eZ\ Publ i sh\ SPI \ Per si st ence\ Cont ent\ Fi el dVal ue. After restoring a Field of Fi el dType, the conversion
must be undone. The following methods of the Fi el dType are responsible for that:

t oPer si st enceVal ue()

This method receives the value of a Fi el d of Fi el dType and must return an SPI Fi el dVal ue, which can be stored.

fronPer si st enceVal ue()
As the counterpart, this method receives an SPI Fi el dVal ue and must reconstruct the original value of the Fi el d from it.
The SPI FieldValue struct has several properties, which might be used by the FieldType as follows:
$dat a
The data to be stored in the eZ Publish database. This may either be a scalar value, a hash map or a simple, serializable object.
$ext er nal Dat a

The arbitrary data stored in this field will not be touched by any of the eZ Publish components directly, but will be hold available for Stor
ing external data.

$sort Key

An value which can be used to sort Cont ent by the field.
Note: TBD: Where will you register the Indexable implementations?

Searching

Fields, or a custom field type, might contain or maintain data which is relevant for user searches. To make the search engine aware of the
data in your field type you need to implement an additional interface and register the implementation.

If your field type does not maintain any data, which should be available to search engines, feel free to just ignore this section.

The eZ\ Publ i sh\ SPI\ Fi el dType\ | ndexabl e defines two methods, which are required to be implemented, if the field type provides
data relevant to search engines. The interface defines two methods for this:

get I ndexData(Field $field)

This method is supposed to return the actual index data for the provided eZ\ Publ i sh\ SPI \ Per si st ence\ Cont ent\ Fi el d. The
index data consists of an array of eZ\ Publ i sh\ SPI \ Per si st ence\ Cont ent\ Sear ch\ Fi el d instances. They are described below
in further detail.

get I ndexDefinition()

To be able to query data properly an indexable field type also is required to return search specification. You must return a hash map of
eZ\ Publ i sh\ SPI'\ Per si st ence\ Cont ent\ Sear ch\ Fi el dType instances from this method, which could look like:

array(
"url' => new Search\ Fi el dType\ StringFiel d(),
"text' => new Search\ Fi el dType\ StringField(),

This example from the Ur | field type shows that the field type will always return two indexable values, both strings. They have the
names ur | andt ext respectively.

Search Field Values

The search field values, returned by the get | ndexDat a method are simple value objects consisting of the following properties:
$nane
The name of the field
$val ue
The value of the field
$t ype
An eZ\ Publ i sh\ SPI\ Per si st ence\ Cont ent\ Sear ch\ Fi el dType instance, describing the type information of the field.

Search Field Types

There are bunch of available search field types, which are automagically handled by our Search backend configuration. When using those
there is no requirement to adapt , for example, the Solr configuration in any way. You can always use custom field types, though, but these
might require re-configuration of the search backend. For Solr this would mean adapting the schema.xml.

The default available search field types are:

StringFiel d. php
Standard string values. Will also be queries by full text searches.
Text Fi el d. php
Standard text values. Will be queried by full text searches. Configured text normalizations in the search backend apply.
Bool eanFi el d. php
Boolean values.
Dat eFi el d. php
Date field. Can be used for date range queries.
Fl oat Fi el d. php
Field for floating point numbers.
I nt eger Fi el d. php
Field for integer numbers.
Pri ceFi el d. php
Field for price values. Currency conversion might be applied by the search backends. Might require careful configuration.
IdentifierField.php
Field used for IDs. Basically acts like the string field, but will not be queried by fulltext searches
Cust onFi el d. php
Custom field, for custom search data types. Will probably require additional configuration in the search backend.

Configuring Solr

As mentioned before, if you are using the standard type definitions there is no need to configure the search backend in any way.
Everything will work fine. The field definitions are handled using dynami cFi el d definitions in Solr, for example.

If you want to configure the handling of your field, you can always add a special field definition the Solr scherma. xm . The field type names,
which are used by the Solr search backend look like this for fields: <cont ent _type_identifier>/<field_identifier>/<search_fi
el d_name>_<t ype>. You can, of course define custom dynamni cFi el d definitions to match, for example, on your custom _<t ype> definiti
on.

You could also define a custom field definition dedicatedly for certain fields, like for the name field in an article:

<field name="articl e/ name/val ue_s" type="string" indexed="true" stored="true"
requi red="fal se"/>

If you want to learn more about the Solr implementation and detailed information about configuring it, check out the Solr Search Service
Implementation Notes.

Storing external data

A Fi el dType may store arbitrary data in external data sources and is in fact encouraged to do so. External storages can be e.g. a web
service, a file in the file system, another database or even the eZ Publish database itself (in form of a non-standard table). In order to perform
this task, the Fi el dType will interact with the Persistence SPI, which can be found in eZ\ Publ i sh\ SPI \ Per si st ence, through the eZ\ Pu
bl i sh\ SPI\ Fi el dType\ Fi el dSt or age interface.

Whenever the internal storage of a Content item that includes a Field of the Fi el dType is accessed, one of the following methods is called
to also access the external data:

hasFi el dDat a()
Returns if the Fi el dType stores extrnal data at all.
st oreFi el dDat a()

Called right before a Fi el d of Fi el dType is stored. The method should perform the storing of $ext er nal Dat a. The method must
return t r ue, if the call manipulated internal data of the given Fi el d, so that it is updated in the internal database.

get Fi el dDat a()

https://doc.ez.no/pages/viewpage.action?pageId=30711228
https://doc.ez.no/pages/viewpage.action?pageId=30711228

Is called after a Fi el d has been restored from the database in order to restore $ext er nal Dat a.
del et eFi el dDat a()

Must delete external data for the given Fi el d, if exists.
get | ndexDat a()

See search service

Each of the above methods receive a $context array, which contains information on the underlying storage and the environment. This context
can be used to store data in the eZ Publish data storage, but outside of the normal structures (e.g. a custom table in an SQL database). Note
that the Field Type must take care on it's own for being compliant to different data sources and that 3rd parties can extend the data source
support easily. For more information about this, take a look at the Best practices section.

Legacy Storage conversion

The Fi el dType system is designed for future storage back ends of eZ Publish. However, the old database schema (Legacy Storage) must
still be supported. Since this database cannot store arbitrary value information as provided by a Fi el dType, another conversion step must
take place if the Legacy Storage is used.

The conversion takes place through the interface eZ\ Publ i sh\ Cor e\ Per si st ence\ Legacy\ Cont ent\ Fi el dVal ue\ Converter,
which you must provide an implementation of with your Fi el dType. The following methods are contained in the interface:

t oSt or ageVal ue()
Converts a Persistence Val ue into a legacy storage specific value.
f rontt or ageVal ue()
Converts the other way around.
t oSt or ageFi el dDefinition()
Converts a Persistence Fi el dDef i ni ti on to a storage specific one.
frontt orageFi el dDefinition
Converts the other way around.
get | ndexCol umm()
Returns the storage column which is used for indexing.

Registering a converter

The registration of a Convert er currently works through the $conf i g parameter of eZ\ Publ i sh\ Cor e\ Per si st ence\ Legacy\ Handl e
r. See the class documentation for further details.

For global service container integration, see Register Field Type.

REST API interaction

When REST API is used, conversion needs to be done for Fi el dType values, settings and validator configurations. These are converted to
and from a simple hash format that can be encoded in REST payload (typically XML or JSON). As conversion needs to be done both when
transmitting and receiving data through REST, Fi el dType implements following pairs of methods:

t oHash()

Converts FieldType Value into a plain hash format.
fronHash()

Converts the other way around.
fieldSettingsToHash()

Converts FieldType settings to a simple hash format.

fiel dSettingsFronHash()

https://doc.ez.no/display/DEVELOPER/Register+Field+Type

Converts the other way around.
val i dat or Confi gurati onToHash()

Converts FieldType validator configuration to a simple hash format.
val i dat or Confi gurati onFronHash()

Converts the other way around.

Extension points

Some Fi el dTypes will require additional processing, for example a Fi el dType storing a binary file, or one having more complex settings or
validator configuration. For this purpose specific implementations of an abstract class eZ\ Publ i sh\ Cor e\ REST\ Conmon\ Fi el dTypePr oc
essor are used. This class provides following methods:

pr eProcessVal ueHash()

Performs manipulations on a received value hash, so that it conforms to the format expected by the f r onHash() method described
above.

post ProcessVal ueHash()
Performs manipulations on a outgoing value hash, previously generated by the t oHash() method described above.
preProcessFi el dSetti ngsHash()

Performs manipulations on a received settings hash, so that it conforms to the format expected by the fi el dSetti ngsFr onmHash()
method described above.

post ProcessFi el dSetti ngsHash()

Performs manipulations on a outgoing settings hash, previously generated by the fi el dSet ti ngsToHash() method described
above.

preProcessVal i dat or Confi gurati onHash()

Performs manipulations on a received validator configuration hash, so that it conforms to the format expected by the val i dat or Conf
i gurati onFronHash() method described above.

post ProcessVal i dat or Confi gur ati onHash()

Performs manipulations on a outgoing validator configuration hash, previously generated by the val i dat or Conf i gur ati onToHash
() method described above.

Base implementations of these methods simply return the given hash, so you can implement only the methods your Fi el dType requires.
Some Fi el dTypes coming with the eZ Publish installation already implement processors and you are encouraged to take a look at them.

For details on registering a Fi el dType processor, see Register Field Type.

Best practices

In this chapter, best practices for implementing a custom —FieldType are collected. We highly encourage following these practices to be
future proof.

Gateway based Storage

In order to allow the usage of a Fi el dType that uses external data with different data storages, it is recommended to implement a gateway
infrastructure and a registry for the gateways. In order to ease this action, the Core implementation of Fi el dType s provides corresponding
interfaces and base classes. These can also be used for custom field types.

The interface eZ\ Publ i sh\ Cor e\ Fi el dType\ St or ageGat eway is implemented by gateways, in order to be handled correctly by the
registry. It has only a single method:

set Connection()

The registry mechanism uses this method to set the SPI storage connection (e.g. the database connection to the Legacy Storage
database) into the gateway, which might be used to store external data. The connection is retrieved from the $cont ext array
automatically by the registry.

Note that the Gateway implementation itself must take care about validating that it received a usable connection. If it did not, it should throw a
Runt i neExcepti on.

The registry mechanism is realized as a base class for Fi el dSt or age implementations: eZ\ Publ i sh\ Cor e\ Fi el dType\ Gat ewayBased
St or age. For managing St or ageGat eway s, the following methods are already implemented in the base class:

https://doc.ez.no/display/DEVELOPER/Register+Field+Type

addGat eway()

Allows the registration of additional St or ageGat eways from the outside. Furthermore, a hash map of St or ageGat eways can be
given to the constructor for basic initialization. This array should orginate from the Dependency Injection mechanism.

get Gat eway()

This protected method is used by the implementation to retrieve the correct St or ageGat eway for the current context.

As a reference for the usage of these infrastructure, the Keyword, Url and User types can be examined.

Settings schema

It is recommended to use a simple hash map format for the settings schema retured by eZ\Publish\SPI\FieldType\FieldType::getSettingsSche
ma(), which follows these rules:

® The key of the hash map identifies a setting (e.g. def aul t)

® |ts value is a hash map (2nd level) describing the setting using
® type to identify the setting type (e.g. i nt orstring)
® def aul t containing the default setting value

An example schema could look like this:

array(

' backupData' => array(
"type' => 'bool"',
"default' => fal se

).

"defaul tVal ue’ => array(
"type' => 'string',
"default' => "'Sindel fingen'

Validator schema

The schema for validator configuration should have a similar format than the settings schema has, except it has an additional level, to group
settings for a certain validation mechanism:

The key on the 1st level is a string, identifying a validator

Assigned to that is a hash map (2nd level) of settings

This hash map has a string key for each setting of the validator

It is assigned to a 3rd level hashmap, the setting description

This hash map should have the same format as for normal settings

For example, for the ezst ri ng type, the validator schema could be:

array(
"stringLength' => array(
"m nStringLength' => array(
"type' = 'int',
"default' => 0,

)
"maxStringlLength' => array(
"type' = "'int'
"default' => null,

Registering a Field Type

To register a Field Type, see Register Field Type.

To be integrated in unit and integration tests, Field Types need to be registered through the ser vi ce. i ni inez/ Publ i sh/ Core/ setting
S.

Templating

A FieldType always need a piece of template to be correctly displayed. See Field Type template.

Testing

Fi el dType s should be integration tested on 1 different levels:

1. Their integration with the Persistence SPI
2. Their integration with the Public API

For both test environments, infrastructure is already in place, so that you can easily implement the required tests for your custom Fi el dType

Persistence SPI

This type of integration test ensures, that a Field Type stores its data properly on basis of different Persistence SPI implementations.

Note: By now, only the Legacy Storage implementation exists.

The integration tests with the Persistence SPI can be found in eZ\ Publ i sh\ SPI \ Test s\ Fi el dType. In order to implement a test for your
custom Fi el dType, you need to extend the common base class eZ\ Publ i sh\ SPI \ Test s\ Fi el dType\ Basel nt egr ati onTest and
implement it's abstract methods. As a reference the Keywor dl nt egrati onTest, Url I nt egrati onTest and User | nt egrati onTest ca
n deal.

Running the test is fairly simple: Just specify the global phpuni t. xm for PHPUnit configuration and make it execute a single test or a
directory of tests, for example:

$ phpunit -c phpunit.xm eZ/ Publish/SPI/Tests/FieldType

in order to run all Fi el dType tests.

Public API

On a second level, the interaction between an implementation of the Public API (aka the Business Layer) and the Field Type is tested. Again,
there is a common base class as the infrastructural basis for such tests, which resides in eZ\ Publ i sh\ API \ Reposi t ory\ Tests\ Fi el dT
ype\ Basel nt egrati onTest .

Note that the In-Memory stubs for the Public API integration test suite, do not perform actual Field Type calls, but mainly emulate
the behavior of a Field Type for simplicity reasons.

If your Field Type needs to convert data between st or eFi el dDat a() and get Fi el dDat a() , you need to implement a eZ\ Publ
i sh\ APl \ Reposi t or y\ Test s\ St ubs\ PseudoExt er nal St or age in addition, which performs this task. Running the tests
against the Business Layer implementation of the Public API is not affected by this.

In this topic:

https://doc.ez.no/display/DEVELOPER/Register+Field+Type
https://doc.ez.no/display/DEVELOPER/Field+Type+template

Field Type API & best practices
® Public API interaction
® FieldDefinition handling
® Value handling
® Storage conversion
® Searching
® Search Field Values
® Search Field Types
® Configuring Solr
® Storing external data
® Legacy Storage conversion
® Registering a converter
® REST API interaction
® Extension points
® Best practices
® Gateway based Storage
® Settings schema
® Validator schema
® Registering a Field Type
® Templating
® Testing
® Persistence SPI
® Public API

	Field Type API and best practices

