
Persistence cache

Introduction
Persistent cache

Layers
Transparent cache

Entity stored only once
What is cached?
Legacy kernel cache purging

PersistenceCachePurger
Reusing Cache service

Get Cache service
Via Dependency injection
Via Symfony2 Container
In legacy via Symfony2 Container

Using the cache service

Introduction

This page describes how Persistence cache works, and how to reuse the cache service it uses.

Configuration

For configuring the cache service, look at the page.Persistence cache configuration

Persistent cache

Layers

Persistence cache can best be described as a implementation of SPI\Per
 that wraps around the main implementation (currently: "Legacysistence

Storage Engine").

As shown in the illustration this is done in the exact same way as the
SignalSlot feature is a custom implementation of API\Repository wraps
around the main Repository. In the case of Persistence Cache, instead of
sending events on calls passed on to the wrapped implementation, most of
the load calls are cached, and calls that perform changes purges the
affected caches. This is done using a Cache service which is provided by
StashBundle; this Service wraps around the Stash library to provide
Symfony logging / debugging functionality, and allows configuration on
cache handlers (Memcached, Apc, Filesystem, ..) to be configured using
Symfony configuration. For how to reuse this Cache service in your own
custom code, see below.

Transparent cache

The persistence cache, just like the HTTP cache, tries to follow principles of
"Transparent caching", this can shortly be described as a cache which is
invisible to the end user and to the admin/editors of eZ Publish where
content is always returned "fresh". In other words there should not be a
need to manually clear the cache like was frequently the case with eZ
Publish 4.x (aka "legacy"). This is possible thanks to an interface that
follows CRUD (Create Read Update Delete) operations per domain, and
number of other operations capable of affecting a certain domain is kept to
a minimum.

Persistence cache was added in 5.1 and enhanced with multi repository (database) support in 5.2.

https://doc.ez.no/display/EZP/Persistence+cache+configuration

Entity stored only once

To make the transparent caching principle as effective as possible, entities
are as much as possible only stored once in cache by their primary id.
Lookup by alternative identifiers (, , ..) is onlyidentifier remoteId
cached with the identifier as cache key and primary as it's cache value,id

compositionsand (list of objects) usually keep only the array of primary id's
as their cache value.

This means a couple of things:

Memory consumption is kept low
Cache purging logic is kept simple (Example: $sectionService->dele

 clears "section/3" cache entry)te(3)
Lookup by and list of objects needs several cache lookups toidentifier
be able to assemble the result value
Cache warmup usually takes several page loads to reach full as identifier is
first cached, then the object

What is cached?

Persistence cache aimed in its first iteration for caching all SPI\Persiste
 calls used in a normal page load, including everything needed fornce

permission checking and url alias lookups.
The following SPI calls are not currently cached:

ObjectStateHandler
UrlWildCardHandler
TrashHandler
SearchHandler

Search queries are currently not cached as it is more difficult to make sure
they stay fresh unless all search cache is purged on every modification, or
a complicated search cache purge system is implemented that is able to
detect which search result to clear. Also, if the Solr implementation is able
to perform well, there might not be a need to implement a complex search

cache in the first place.

Another thing to mention is transactions, currently this is handled very simple by clearing all cache on rollback, this can be improved in the future if
a need for it arises.
For more details on which calls are cached or not, and where to contribute additional caches, check out the .source

Legacy kernel cache purging

Currently with the Dual-kernel eZ Publish has in version 5.x, the "Transparent caching principle" referred to above has one major obstacle. eZ
Publish 4.x ("legacy") kernel was not made for such a thing and has a lot of API's that can make changes to the data in the database
and hence make the persistence cache "stale" (aka out of date).

A couple of things are in place to try to avoid this from happening / making it less of a problem:

The Persistence cache has a expiry time configurable in ezpublish.yml
LegacyBundle (the bundle that exposes legacy to Symfony and integrates Symfony with legacy) has a PersistenceCachePurger

PersistenceCachePurger

PersistenceCachePurger is setup by to receive all relevant triggered by legacy kernel, and clear relevantLegacyBundle cache events
Persistence cache based on the incoming data.
This means a "Clear all cache" operation done in legacy will also clear all persistence cache, it also means relevant content cache is cleared on
publishing, so all code using the api's covered by these events should in effect be cache safe in regards to persistence cache.

So, in case of stale persistence cache, a clear all cache in legacy admin interface is thus still possible, however a manual cache clear is also
possible but how to do it depends on which cache handler is currently used.

https://github.com/ezsystems/ezpublish-kernel/tree/master/eZ/Publish/Core/Persistence/Cache
https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Bundle/EzPublishLegacyBundle/Cache/PersistenceCachePurger.php
https://github.com/ezsystems/ezpublish-legacy/blob/master/doc/features/5.0/event.txt
https://github.com/ezsystems/ezpublish-legacy/blob/master/doc/features/5.1/event.txt

Reusing Cache service

Using the cache service allows you to use a interface and not have to care about if the system has been configured to place the cache in
Memcached, Apc or on File system. And as eZ Publish requires that instances uses a cluster aware cache, you can safely assume your cache is
shared across all eZ Publish web servers.

Get Cache service

Via Dependency injection

In eZ Publish 5.x Symfony2 stack you can simply define that you require the "cache" service in your configuration like so:

myApp.myService:
 class: %myApp.myService.class%
 arguments:
 - @ezpublish.cache_pool

The "cache" service is an instance of the following class: Tedivm\StashBundle\Service\CacheService

Via Symfony2 Container

Like any other service, it is possible to get the "cache" service via container as well like so:

/** @var $cacheService \Tedivm\StashBundle\Service\CacheService */
$cacheService = $container->get('ezpublish.cache_pool');

In legacy via Symfony2 Container

When eZ Publish legacy runs via eZ Publish 5.x Symfony2 stack, you will be able to get the service container in the following way:

Interface warning
Current implementation uses a caching library called , via . If this changes, then the Interface of the cache serviceStash Stash-bundle
will most likely change as well.

Cache key warning
When reusing the cache service within your own code, it is very important to not conflict with the cache keys used by others, hence why
example of usage starts with a unique "myApp" key for the namespace of your own cache, you must do the same! So never clear cache
using the cache service without your key specified, otherwise you'll clear all cache.

Multi repository info
New in 5.2 is support for multi repository setups (several databases on same eZ Publish install), see how to configure this using several

 and site access/group setting "cache_pool_name" for selecting the one to use.Stash cache pools

yml configuration

getting the cache service in php

http://stash.tedivm.com/
https://github.com/tedivm/TedivmStashBundle
https://confluence.ez.no/display/EZP/Persistence+cache+configuration#Persistencecacheconfiguration-Multirepositorysetup
https://confluence.ez.no/display/EZP/Persistence+cache+configuration#Persistencecacheconfiguration-Multirepositorysetup

// From a legacy module or any PHP code running in legacy context.
$container = ezpKernel::instance()->getServiceContainer();

/** @var $cacheService \Tedivm\StashBundle\Service\CacheService */
$cacheService = $container->get('ezpublish.cache_pool');

Using the cache service

Example usage of the cache service:

$cacheItem = $cacheService->getItem('myApp', 'object', $id);
 if ($cacheItem->isMiss())
 {
 $myObject = $container->get('my_app.backend_service')->loadObject($id)
 $cacheItem->set($myObject);
 }
 else
 {
 $myObject = $cacheItem->get();
 }
 return $myObject;

For more info on usage, take a look at Stash's documentation.

Getting cache service in legacy

Actuall example from cache use in ezpublish-kernel

http://stash.tedivm.com/

	Persistence cache

