
Purge
This page explains the content cache purge  mechanism used when publishing content from the UI or from a container-aware(aka invalidate)
script, resulting in cache being invalidated either in the built-in Symfony Reverse Proxy, or on the much faster Varnish reverse proxy.

Overview

As explained on the  page, eZ Platform returns content-related responses with an  header that are stored together byHttpCache X-Location-Id
the configured HTTP cache. This allows you to clear  HTTP cache representing specifically a given Content item. On publishing the(invalidate)
content, a cache purger is triggered with the Content ID in question, which in turn figures out affected content Locations based on Smart HTTP

 logic. The returned Location IDs are sent for purge using the purge type explained further below.cache clearing

Purge types

Symfony Proxy: Local purge type

By default, invalidation requests will be emulated and sent to the Symfony Proxy cache Store. Cache purge will thus be synchronous, meaning no
HTTP purge requests will be sent around when publishing.

ezpublish:
    http_cache:
        purge_type: local

Varnish: HTTP purge type

With Varnish you can configure one or several servers that should be purged over HTTP. This purge type is asynchronous, and flushed by the
end of Symfony kernel-request/console cycle . Settings for purge servers can be configured per site group or site access:(during terminate event)

ezpublish:
    http_cache:
        purge_type: http

    system:
        my_siteacess:
            http_cache:
                purge_servers: ["http://varnish.server1/", "http://varnish.server2/",
"http://varnish.server3/"]

For further information on setting up Varnish, see  .Using Varnish

Purging

While purging on content, updates are handled for you; on actions against the eZ Platform APIs, there are times you might have to purge
manually.

Manual by code

ezplatform.yml

ezplatform.yml

https://doc.ez.no/display/TECHDOC/HttpCache
https://doc.ez.no/display/TECHDOC/Smart+HTTP+cache+clearing
https://doc.ez.no/display/TECHDOC/Smart+HTTP+cache+clearing
https://doc.ez.no/display/TECHDOC/Using+Varnish


Manual purging from code which takes  logic into account, this is using the service also used internally for cacheSmart HttpCache clearing 
clearing on content updates:

// Purging cache based on content id, this will trigger cache clear of all locations
found by Smart HttpCache clear
// typically self, parent, related, ..
$container->get('ezpublish.http_cache.purger')->purgeForContent(55);

Manually by command with Symfony Proxy

Symfony Proxy stores its cache in the Symfony cache directory, so a regular  commands will clear it:cache:clear

php app/console --env=prod cache:clear

Manual by HTTP BAN request on Varnish

When using Varnish and in need to purge content directly, then the following examples show how this is done internally by our FOSPurgeClient,
FOSHttpCache Varnish proxy client:and in turn 

For purging all:

BAN / HTTP 1.1 
Host: localhost 
X-Location-Id: .* 

Or with given location ids :(here 123 and 234)  

BAN / HTTP 1.1 
Host: localhost 
X-Location-Id: ^(123|234)$

 
 

https://doc.ez.no/display/TECHDOC/Smart+HTTP+cache+clearing

	Purge

