
Context aware HTTP cache

Use case
Feature
Http cache clear
Symfony reverse proxy
Varnish
User context hash
Workflow
User hash generation

User hash generation with Varnish 3
User hash generation with Varnish 4

New anonymous X-User-Hash
Default options for FOSHttpCacheBundle defined in eZ

Credits

This feature is available as of eZ Publish 5.2

Use case

Being based on Symfony 2, eZ Publish 5 uses HTTP cache from version 5.0 . However this cache managementextended with content awareness
is only available for anonymous users due to HTTP restrictions.

It is of course possible to make HTTP cache vary thanks to the response header, but this header can only be based on one of the requestVary
headers (e.g.). Thus, to make the cache vary on a specific context (e.g. a hash based on a user roles and limitations), thisAccept-Encoding
context must be present in the original request

Feature

As the response can vary on a request header, the base solution is to make the kernel do a sub-request in order to retrieve the user context hash
(aka). Once the has been retrieved, it's injected in the original request in the custom header, making ituser hash user hash X-User-Hash
possible to the HTTP response on this header:vary

<?php
use Symfony\Component\HttpFoundation\Response;

// ...

// Inside a controller action
$response = new Response();
$response->setVary('X-User-Hash');

This solution is implemented in Symfony reverse proxy (aka) and is also accessible to dedicated reverse proxies like Varnish.HttpCache

If you are looking for 5.2/5.3 Context aware HTTP cache, see the page Context aware HTTP cache in eZ Publish 5.2-5.3

Note that sharing ESIs across SiteAccesses is not possible by design (see

 for technical details) - EZP-22535 Cached ESI can not be shared across pages/siteaccesses due to "pathinfo" property CLOSED

Vary by User
In cases where you need to deliver content uniquely to a given user, and tricks like using javascript and cookie values, hinclude, or
disabling cache is not an option. Then remaining option is to vary response by cookie:

$response->setVary('Cookie');

https://doc.ez.no/display/EZP/Context+aware+HTTP+cache+in+eZ+Publish+5.2-5.3
https://jira.ez.no/browse/EZP-22535

Http cache clear

5.4 / 2014.11

As of v5.4 / v2014.11, usage of has been introduced, impacting the following features:FOSHttpCacheBundle

Http cache purge
User context hash

Varnish proxy client from FOSHttpCache lib is now used for clearing eZ Http cache, even when using Symfony HttpCache. A single requestBAN
is sent to registered purge servers, containing a header. This header contains all Location IDs for which objects in cache needX-Location-Id
to be cleared.

Symfony reverse proxy

Symfony reverse proxy (aka HttpCache) is supported out of the box, all you have to do is to activate it.

Varnish

User context hash

FOSHttpCacheBundle is usedUser Context feature is activated by default.

As the response can vary on a request header, the base solution is to make the kernel do a sub-request in order to retrieve the context (aka user
). Once the has been retrieved, it's injected in the original request in the header, making it possible to context hash user hash X-User-Hash vary

the HTTP response on this header:

<?php
use Symfony\Component\HttpFoundation\Response;

// ...

// Inside a controller action
$response = new Response();
$response->setVary('X-User-Hash');

This solution is and is also accessible to .implemented in Symfony reverse proxy (aka)HttpCache dedicated reverse proxies like Varnish

Unfortunately this is not optimal as it will by default vary by all cookies, including those set by add trackers, analytics tools,
recommendation services, ... However as long as application backend does not need these cookies, you can solve this byyour
stripping everything but session cookie. Example for Varnish can be found in the default VCL examples in part dealing with User Hash,
for single server setup this can easily be accomplished in Apache / Nginx as well.

Please refer to Using Varnish with eZ Publish Platform 5.4

Name of the . By default eZ Publish sets it to .user hash header is configurable in FOSHttpCacheBundle **X-User-Hash**

http://foshttpcachebundle.readthedocs.org/
http://foshttpcachebundle.readthedocs.org/en/latest/features/user-context.html
http://foshttpcachebundle.readthedocs.org/en/latest/features/symfony-http-cache.html
http://foshttpcache.readthedocs.org/en/latest/varnish-configuration.html
https://doc.ez.no/pages/viewpage.action?pageId=25985773
http://foshttpcachebundle.readthedocs.org/en/latest/reference/configuration/user-context.html

Workflow

User hash generation

eZ Publish already interferes in the hash generation process, by adding current user permissions and limitations. One can also interfere in this
process by .implementing custom context provider(s)

User hash generation with Varnish 3

Described behavior comes out of the box with Symfony reverse proxy, but it's of course possible ot use Varnish to achieve the same.

Varnish 3 style for eZ Publish 5.4 / 2014.11
Our Backend - We assume that eZ Publish Web server listen on port 80 on the same
machine.
backend ezpublish {
 .host = "127.0.0.1";
 .port = "80";
}

Called at the beginning of a request, after the complete request has been received
sub vcl_recv {

 # Set the backend
 set req.backend = ezpublish;

 # ...

 # Retrieve client user hash and add it to the forwarded request.
 call ez_user_hash;

 # If it passes all these tests, do a lookup anyway;
 return (lookup);
}

Sub-routine to get client user hash, for context-aware HTTP cache.
Don't forget to correctly set the backend host for the Curl sub-request.
sub ez_user_hash {

 # Prevent tampering attacks on the hash mechanism
 if (req.restarts == 0
 && (req.http.accept ~ "application/vnd.fos.user-context-hash"
 || req.http.x-user-context-hash
)
) {
 error 400;
 }

 if (req.restarts == 0 && (req.request == "GET" || req.request == "HEAD")) {
 # Get User (Context) hash, for varying cache by what user has access to.
 # https://doc.ez.no/display/EZP/Context+aware+HTTP+cach

Please refer to .FOSHttpCacheBundle documentation on how user context feature works

Please refer to .FOSHttpCacheBundle documentation on how user hashes are being generated

http://foshttpcachebundle.readthedocs.org/en/latest/reference/configuration/user-context.html#custom-context-providers
http://foshttpcachebundle.readthedocs.org/en/latest/features/user-context.html#how-it-works
http://foshttpcachebundle.readthedocs.org/en/latest/features/user-context.html#generating-hashes

 # Anonymous user w/o session => Use hardcoded anonymous hash to avoid backend
lookup for hash
 if (req.http.Cookie !~ "eZSESSID" && !req.http.authorization) {
 # You may update this hash with the actual one for anonymous user
 # to get a better cache hit ratio across anonymous users.
 # Note: Then needs update every time anonymous user role assignments
change.
 set req.http.X-User-Hash = "38015b703d82206ebc01d17a39c727e5";
 }
 # Pre-authenticate request to get shared cache, even when authenticated
 else {
 set req.http.x-fos-original-url = req.url;
 set req.http.x-fos-original-accept = req.http.accept;
 set req.http.x-fos-original-cookie = req.http.cookie;
 # Clean up cookie for the hash request to only keep session cookie, as
hash cache will vary on cookie.
 set req.http.cookie = ";" + req.http.cookie;
 set req.http.cookie = regsuball(req.http.cookie, "; +", ";");
 set req.http.cookie = regsuball(req.http.cookie, ";(eZSESSID[^=]*)=", ";
\1=");
 set req.http.cookie = regsuball(req.http.cookie, ";[^][^;]*", "");
 set req.http.cookie = regsuball(req.http.cookie, "^[;]+|[;]+$", "");

 set req.http.accept = "application/vnd.fos.user-context-hash";
 set req.url = "/_fos_user_context_hash";

 # Force the lookup, the backend must tell not to cache or vary on all
 # headers that are used to build the hash.

 return (lookup);
 }
 }

 # Rebuild the original request which now has the hash.
 if (req.restarts > 0
 && req.http.accept == "application/vnd.fos.user-context-hash"
) {
 set req.url = req.http.x-fos-original-url;
 set req.http.accept = req.http.x-fos-original-accept;
 set req.http.cookie = req.http.x-fos-original-cookie;

 unset req.http.x-fos-original-url;
 unset req.http.x-fos-original-accept;
 unset req.http.x-fos-original-cookie;

 # Force the lookup, the backend must tell not to cache or vary on the
 # user hash to properly separate cached data.

 return (lookup);
 }
}

sub vcl_fetch {

 # ...

 if (req.restarts == 0
 && req.http.accept ~ "application/vnd.fos.user-context-hash"

 && beresp.status >= 500
) {
 error 503 "Hash error";
 }
}

sub vcl_deliver {
 # On receiving the hash response, copy the hash header to the original
 # request and restart.
 if (req.restarts == 0
 && resp.http.content-type ~ "application/vnd.fos.user-context-hash"
 && resp.status == 200
) {
 set req.http.x-user-hash = resp.http.x-user-hash;

 return (restart);
 }

 # If we get here, this is a real response that gets sent to the client.

 # Remove the vary on context user hash, this is nothing public. Keep all
 # other vary headers.
 set resp.http.Vary = regsub(resp.http.Vary, "(?i),? *x-user-hash *", "");
 set resp.http.Vary = regsub(resp.http.Vary, "^, *", "");
 if (resp.http.Vary == "") {
 remove resp.http.Vary;
 }

 # Sanity check to prevent ever exposing the hash to a client.

 remove resp.http.x-user-hash;
}

User hash generation with Varnish 4

// Varnish 4 style - eZ 5.4+ / 2014.09+
// Complete VCL example

vcl 4.0;

// Our Backend - Assuming that web server is listening on port 80
// Replace the host to fit your setup
backend ezpublish {
 .host = "127.0.0.1";
 .port = "80";
}

// Called at the beginning of a request, after the complete request has been received
sub vcl_recv {

 // Set the backend
 set req.backend_hint = ezpublish;

 // ...

 // Retrieve client user hash and add it to the forwarded request.
 call ez_user_hash;

 // If it passes all these tests, do a lookup anyway.
 return (hash);
}

// Called when the requested object has been retrieved from the backend
sub vcl_backend_response {
 if (bereq.http.accept ~ "application/vnd.fos.user-context-hash"
 && beresp.status >= 500
) {
 return (abandon);
 }

 // ...
}

// Sub-routine to get client user hash, for context-aware HTTP cache.
sub ez_user_hash {

 // Prevent tampering attacks on the hash mechanism
 if (req.restarts == 0
 && (req.http.accept ~ "application/vnd.fos.user-context-hash"
 || req.http.x-user-hash
)
) {
 return (synth(400));
 }

 if (req.restarts == 0 && (req.method == "GET" || req.method == "HEAD")) {

 // Get User (Context) hash, for varying cache by what user has access to.
 // https://doc.ez.no/display/EZP/Context+aware+HTTP+cache

 // Anonymous user w/o session => Use hardcoded anonymous hash to avoid backend
lookup for hash
 if (req.http.Cookie !~ "eZSESSID" && !req.http.authorization) {
 // You may update this hash with the actual one for anonymous user
 // to get a better cache hit ratio across anonymous users.
 // Note: You should then update it every time anonymous user rights
change.
 set req.http.X-User-Hash = "38015b703d82206ebc01d17a39c727e5";
 }
 // Pre-authenticate request to get shared cache, even when authenticated
 else {
 set req.http.x-fos-original-url = req.url;
 set req.http.x-fos-original-accept = req.http.accept;
 set req.http.x-fos-original-cookie = req.http.cookie;
 // Clean up cookie for the hash request to only keep session cookie, as
hash cache will vary on cookie.
 set req.http.cookie = ";" + req.http.cookie;
 set req.http.cookie = regsuball(req.http.cookie, "; +", ";");
 set req.http.cookie = regsuball(req.http.cookie, ";(eZSESSID[^=]*)=", ";
\1=");
 set req.http.cookie = regsuball(req.http.cookie, ";[^][^;]*", "");
 set req.http.cookie = regsuball(req.http.cookie, "^[;]+|[;]+$", "");
 set req.http.accept = "application/vnd.fos.user-context-hash";
 set req.url = "/_fos_user_context_hash";

 // Force the lookup, the backend must tell how to cache/vary response
containing the user hash
 return (hash);
 }
 }

 // Rebuild the original request which now has the hash.
 if (req.restarts > 0
 && req.http.accept == "application/vnd.fos.user-context-hash"
) {
 set req.url = req.http.x-fos-original-url;
 set req.http.accept = req.http.x-fos-original-accept;
 set req.http.cookie = req.http.x-fos-original-cookie;
 unset req.http.x-fos-original-url;
 unset req.http.x-fos-original-accept;
 unset req.http.x-fos-original-cookie;

 // Force the lookup, the backend must tell not to cache or vary on the
 // user hash to properly separate cached data.

 return (hash);
 }
}

sub vcl_deliver {
 // On receiving the hash response, copy the hash header to the original
 // request and restart.
 if (req.restarts == 0
 && resp.http.content-type ~ "application/vnd.fos.user-context-hash"
) {
 set req.http.x-user-hash = resp.http.x-user-hash;

 return (restart);
 }

 // If we get here, this is a real response that gets sent to the client.
 // Remove the vary on context user hash, this is nothing public. Keep all
 // other vary headers.
 set resp.http.Vary = regsub(resp.http.Vary, "(?i),? *x-user-hash *", "");
 set resp.http.Vary = regsub(resp.http.Vary, "^, *", "");
 if (resp.http.Vary == "") {
 unset resp.http.Vary;
 }

 // Sanity check to prevent ever exposing the hash to a client.
 unset resp.http.x-user-hash;
 if (client.ip ~ debuggers) {
 if (obj.hits > 0) {
 set resp.http.X-Cache = "HIT";
 set resp.http.X-Cache-Hits = obj.hits;
 } else {
 set resp.http.X-Cache = "MISS";

 }
 }
}

New anonymous X-User-Hash

The anonymous X-User-Hash is generated based on the , and . The hashanonymous user group role 38015b703d82206ebc01d17a39c727e5
that is provided in the code above will work only when these three variables are left unchanged. Once you change the default permissions and
settings, the X-User-Hash will change and Varnish won't be able to effectively handle cache anymore.

In that case you need to find out the new anonymous X-User-Hash and change the VCL accordingly, else Varnish will return a no-cache header.

The easiest way to find the new hash is:

1. Connect to your server (should be enough)shh

2. Add to your file<your-domain.com> /etc/hosts

3. Execute the following command:

curl -I -H "Accept: application/vnd.fos.user-context-hash" http://<your-domain.com>/_fos_user_context_hash

You should get a result like this:

HTTP/1.1 200 OK
Date: Mon, 03 Oct 2016 15:34:08 GMT
Server: Apache/2.4.18 (Ubuntu)
X-Powered-By: PHP/7.0.8-0ubuntu0.16.04.2
X-User-Hash: b1731d46b0e7a375a5b024e950fdb8d49dd25af85a5c7dd5116ad2a18cda82cb
Cache-Control: max-age=600, public
Vary: Cookie,Authorization
Content-Type: application/vnd.fos.user-context-hash

4. Now, replace the existing X-User-Hash value with the new one:

Note: This needs update every time anonymous user role assignments change.
set req.http.X-User-Hash =
"b1731d46b0e7a375a5b024e950fdb8d49dd25af85a5c7dd5116ad2a18cda82cb";

5. Restart the Varnish server and everything should work fine.

Default options for FOSHttpCacheBundle defined in eZ

The following configuration is defined in eZ by default for FOSHttpCacheBundle. You may override these settings.

fos_http_cache:
 proxy_client:
 # "varnish" is used, even when using Symfony HttpCache.
 default: varnish
 varnish:
 # Means http_cache.purge_servers defined for current SiteAccess.
 servers: [$http_cache.purge_servers$]

 user_context:
 enabled: true
 # User context hash is cached during 10min
 hash_cache_ttl: 600
 user_hash_header: X-User-Hash

Credits

This feature is based on by .Context aware HTTP caching post asm89

http://asm89.github.io/2012/09/26/context-aware-http-caching.html
https://github.com/asm89

	Context aware HTTP cache

