Smart HttpCache clearing

EZP >=2015.01

Smart Http cache clearing refers to the ability to clear cache for locations/content that can be in relation with the content being currently cleared.

When published, any content item usually has at least one location, figured by its URL. Therefore Http cache being bound to URLs, if content A is
updated (new version is published), we want Http cache for all its locations to be cleared, so the content itself can appear up-to-date everywhere it
is supposed to be displayed. Sometimes, clearing cache for the content's locations is not sufficient. You can for instance have an excerpt of it
displayed in a list from the parent location, or from within a relation. In this case, cache for the parent location and/or the relation need to be

cleared as well (at least if an ESI is not used).

The mechanism

Smart Http cache clearing is an event based mechanism. Whenever a content item needs its cache to be cleared, the cache purger service
sends an ezpubl i sh. cache_cl ear . cont ent event (also identified by eZ\ Publ i sh\ Cor e\ WQC\ Synf ony\ WCEvent s: : CACHE_CLEAR C

ONTENT constant) and passes a eZ\ Publ i sh\ Cor e\ M\WC\ Synf ony\ Event \ Cont ent CacheC ear Event event object. This object contains
the ContentInfo object we need to clear the cache for. Every listener for this event can add location objects to the cache clear list.

Once the event dispatched, the purger passes collected location objects to the purge client, which will effectively send the cache BAN request.

Note: The event is dispatched with a dedicated event dispatcher, ezpubl i sh. htt p_cache. event _di spat cher.

Default behavior

By default, following locations will be added to the cache clear list:

® All locations assigned to content (Assi gnedLocat i onsLi st ener)
® Parent location of all content's locations (Par ent Locat i onsLi st ener)
® Locations for content's relations, including reverse relations (Rel at edLocat i onsLi st ener)

Implementing a custom listener

By design, smart Http cache clearing is extensible. One can easily implement an event listener/subscriber to the ezpubl i sh. cache_cl ear. co
nt ent event and add locations to the cache clear list.

Example

Here's a very simple custom listener example, adding an arbitrary location to the list.

Important: Cache clear listener services must be tagged as ezpubl i sh. htt p_cache. event _subscri ber orezpublish. http_
cache. event _| i stener.

nanespace Acne\ AcneTest Bundl e\ Event Li st ener;

use
use
use
use

eZ\ Publ i sh\ API'\ Reposi t ory\ Locati onServi ce;

eZ\ Publ i sh\ Cor e\ W\WC\ Synf ony\ Event \ Cont ent CacheCl ear Event ;
eZ\ Publ i sh\ Cor e\ W\WC\ Synf ony\ WCEvent s;

Synf ony\ Conponent \ Event Di spat cher\ Event Subscri ber| nterface;

class ArbitrarylLocationsLi stener inplenents Event Subscriberlnterface

{

/**
* @ar LocationService
*/

private $l ocationService;

public function _ _construct(LocationService $l ocationService)

{

$t hi s->l ocati onService = $l ocati onServi ce;

}
public static function get SubscribedEvents()
{
return [MCEvents: : CACHE_CLEAR_CONTENT => [' onCont ent CacheC ear', 100]];
}

public function onContent CacheC ear(Content Cached ear Event $event)
{

/'l $contentInfo is the Contentlnfo object for the content being cleared.
/1l You can extract information fromit (e.g. ContentType fromits

content Typel d), using appropriate Repository services.

$contentInfo = $event->get Content | nfo();

/1 Adding arbitrary locations to the cache clear |ist.
$event - >addLocat i onTod ear ($t hi s- >l ocati onServi ce->l oadLocation(123));
$event - >addLocat i onToCl ear ($t hi s->| ocati onServi ce->l oadLocation(456));

par anet ers:

acne. cache_clear.arbitrary_locations_listener.cl ass:

Acmre\ AcneTest Bundl e\ Event Li st ener\ Arbi trarylLocati onsLi st ener

servi ces:

acne. cache_clear.arbitrary_locations_listener:
class: %acme. cache_clear.arbitrary_l ocations_|istener.class%
argunments: [@zpublish.api.service.location]
t ags:
- { name: ezpublish.http_cache. event_subscri ber }

	Smart HttpCache clearing

