
Using Varnish with eZ Publish 5.2-5.3

Configure Varnish

The first thing is to configure Varnish to advertise ESI usage and to activate cache invalidation and .Context aware HTTP cache

Varnish 3.x - eZ Publish 5.2/5.3 - Complete VCL

import curl;

Our Backend - We assume that eZ Publish Web server listen on port 80
backend ezpublish {
 .host = "127.0.0.1";
 .port = "80";
}

ACL for purgers IP.
Provide here IP addresses that are allowed to send PURGE requests.
PURGE requests will be sent by the backend.
acl purgers {
 "127.0.0.1";
 "192.168.0.0"/16;
}

Called at the beginning of a request, after the complete request has been received
sub vcl_recv {

 # Set the backend
 set req.backend = ezpublish;

 # Advertise Symfony for ESI support
 set req.http.Surrogate-Capability = "abc=ESI/1.0";

 # Add a unique header containing the client address (only for master request)
 # Please note that /_fragment URI can change in Symfony configuration
 if (!req.url ~ "^/_fragment") {
 if (req.http.x-forwarded-for) {
 set req.http.X-Forwarded-For = req.http.X-Forwarded-For + ", " +
client.ip;
 } else {
 set req.http.X-Forwarded-For = client.ip;

Version compatibility : / / 5.2 5.3 2013.07

Provided VCL example is given for .Varnish 3.x only

It needs to be installed.Varnish Curl Vmod

Debian tip
A Varnish Vmod always needs to be built from source.
If you use Debian, you may want to follow .this tutorial for building Varnish Vmods

ezpublish5.vcl

https://doc.ez.no/display/EZP/Context+aware+HTTP+cache
https://github.com/varnish/libvmod-curl
http://lassekarstensen.wordpress.com/2013/07/29/building-a-varnish-vmod-on-debian/

 }
 }

 # Trigger purge if needed.
 call ez_purge;

 # Normalize the Accept-Encoding headers
 if (req.http.Accept-Encoding) {
 if (req.http.Accept-Encoding ~ "gzip") {
 set req.http.Accept-Encoding = "gzip";
 } elsif (req.http.Accept-Encoding ~ "deflate") {
 set req.http.Accept-Encoding = "deflate";
 } else {
 unset req.http.Accept-Encoding;
 }
 }

 # Don't cache Authenticate & Authorization
 if (req.http.Authenticate || req.http.Authorization) {
 return(pass);
 }

 # Don't cache requests other than GET and HEAD.
 if (req.request != "GET" && req.request != "HEAD") {
 return (pass);
 }

 # Do a standard lookup on assets
 # Note that file extension list below is not extensive, so consider completing it
to fit your needs.
 if (req.request == "GET" && req.url ~
"\.(css|js|gif|jpe?g|bmp|png|tiff?|ico|img|tga|wmf|svg|swf|ico|mp3|mp4|m4a|ogg|mov|avi
|wmv|zip|gz|pdf|ttf|eot|wof)$") {
 return (lookup);
 }

 # Retrieve client user hash and add it to the forwarded request.
 call ez_user_hash;

 # If it passes all these tests, do a lookup anyway;
 return (lookup);
}

Called when the requested object has been retrieved from the backend
sub vcl_fetch {

 # Optimize to only parse the Response contents from Symfony
 if (beresp.http.Surrogate-Control ~ "ESI/1.0") {
 unset beresp.http.Surrogate-Control;
 set beresp.do_esi = true;
 }

 # Don't cache response with Set-Cookie
 if (beresp.http.Set-Cookie) {
 set beresp.ttl = 0s;
 return (hit_for_pass);
 }

 # Respect the Cache-Control=private header from the backend

 if (beresp.http.Cache-Control ~ "private") {
 set beresp.ttl = 0s;
 return (hit_for_pass);
 }

 return (deliver);
}

Handle purge
Only works with "multiple_http" purge method
sub ez_purge {

 # Handle purge
 # Only works with "multiple_http" purge method
 if (req.request == "PURGE") {
 if (!client.ip ~ purgers) {
 error 405 "Method not allowed";
 }

 if (req.http.X-Location-Id == "*") {
 # Purge all locations
 ban("obj.http.X-Location-Id ~ ^[0-9]+$");
 error 200 "Purge all locations done.";
 } elseif (req.http.X-Location-Id) {
 # Purge location by its locationId
 ban("obj.http.X-Location-Id == " + req.http.X-Location-Id);
 error 200 "Purge of content connected to the location id(" +
req.http.X-Location-Id + ") done.";
 }
 }
}
Sub-routine to get client user hash, for context-aware HTTP cache.
Don't forget to correctly set the backend host for the Curl sub-request.
sub ez_user_hash {

 if (req.request == "GET") {
 # Pre-authenticate request to get shared cache, even when authenticated
 if (req.http.Cookie !~ "eZSESSID") {
 # User don't have session cookie => Set a hardcoded anonymous hash
 set req.http.X-User-Hash = "38015b703d82206ebc01d17a39c727e5";
 } else {
 # User is authenticated => fetch user hash
 curl.header_add("X-HTTP-Override: AUTHENTICATE");
 curl.header_add("Accept: application/vnd.ez.UserHash+text");
 curl.header_add("Cookie: " + req.http.Cookie);
 # Customize with real backend host
 # E.g. curl.get("http://www.metalfrance.net");
 curl.get("http://" + req.http.host + "/");
 if (curl.status() == 200) {
 set req.http.X-User-Hash = curl.header("X-User-Hash");
 }
 }
 }

}

You can of course add additional rules if you need.

Configure eZ Publish

Update your Virtual Host

By default your front controller (index.php) uses the built-in reverse proxy, EzPublishCache, which extends SymfonyHTTPCache. In
order to use Varnish, you need to deactivate it and configure Varnish to be a trusted proxy so ESI continues to work.

On apache:

<VirthualHost *:80>
 # Configure your VirtualHost with rewrite rules and stuff

 # Force front controller NOT to use built-in reverse proxy.
 SetEnv USE_HTTP_CACHE 0

 # Configure IP of your Varnish server to be trusted proxy
 SetEnv TRUSTED_PROXIES "193.22.44.22"
</VirtualHost>

On nginx:

fastcgi_param USE_HTTP_CACHE 0
fastcgi_param TRUSTED_PROXIES "193.22.44.22"

Update YML configuration

New in eZ Publish 5.2 / 2013.07
The front controller can now be altered with environment variables, without the need to modify index.php, this is reflected
in the steps below.

my_virtualhost.conf

mysite.com

ezpublish:
 http_cache:
 # Before 5.4: Use "multiple_http" method for purging content
 # As of 5.4 only use "http"
 purge_type: http

 system:
 # Assuming that my_siteaccess_group your frontend AND backend siteaccesses
 my_siteaccess_group:
 http_cache:
 # Fill in your Varnish server(s) address(es).
 purge_servers: [http://my.varnish.server:6081]

Et voilà !

ezpublish.yml

	Using Varnish with eZ Publish 5.2-5.3

