Step 2 - Customizing the general layout

We will begin by customizing the global layout of our site, in order to end up with this rendering: .
Tutorial path

1 Content rendering configuration
2 Creating the template

3 Fixing the assets

4 Rendering the content

5 Extracting the layout

First, go to the root of your eZ Platform site. You should see the root folder of the clean install,
without any kind of layout. You can go to / ez, edit this Content item and see that this page
changes. When / is requested, eZ Platform renders the root content using the ez_cont ent : vi ew
Cont ent controller. We will customize this step by instructing Platform to use a custom template to

render this particular item.

eZ Platform organizes content as a tree. Each Content item is referenced by a
Location, and each Location as a parent. The root content Location has the ID 2 b

y default.

Content rendering configuration

To use a custom template when rendering the root content, let's create a cont ent _vi ew configur
ation block for ezpubl i sh.

We will use the def aul t namespace, but we could have used any siteaccess instead. Edit app/ ¢
onfi g/ ezpl atform ynm . At the end, add the following block, right after the language
configuration (pay attention to indentation: def aul t should be at the same level as si t e_gr oup):

ezplatform.yml

defaul t:
content _vi ew
full:
root folder:
template: "full/root_folder.htm .tw g"
mat ch:
| d\ Location: 2

This tells Platform to use the t enpl at e when rendering any content referenced by the Location
with the id 2. There is a whole set of view matchers that can be used to customize rendering

depending on any criterion.

Creating the template

1. Download index.html
2. Saveitin app/ Resour ces/ vi ews as app/ Resour ces/ vi ews/ful | /root _f ol der.

htm . tw g.
3. Refresh the site's root and you should see the site's structure, but without any styles or

images. Let's fix this.
4. Edittheroot _fol der. htnl.tw g template.

Fixing the assets

1. The first thing to do is to fix the loading of stylesheets, scripts and design images.
2. Download assets.zip by clicking on the "Raw" button on Github.

https://doc.ez.no/display/TECHDOC/View+provider+configuration#Viewproviderconfiguration-Matchers
https://github.com/bdunogier/platform-workshop/blob/master/src/Workshop/TutorialBundle/Resources/public/index.html
https://github.com/ezsystems/ezsc2015-beginner-tutorial/blob/master/assets.zip

3. Then unpack its contents to the web directory of your project. You will end up with web/ as
set s/, containing css, j s and i mages subfolders.

4. In the template, in the <ht m > section, change the <st yl e> tags about bootstrap and
custom CSS lines (lines 15 to 21) with the following code:

root_folder.html.twig

{% styl esheets 'assets/css/*' filter="cssrewite %
<link rel ="styl esheet" href="{{ asset_url }}" />
{% endstyl esheets %

As explained in the Symfony assetic doc, this will iterate over the files in web/ asset s/ css and
load them as stylesheets. Refresh the page and you should now see the static design of the site. At
the bottom of the template, you will find <scr i pt > tags that load jQuery and Bootstrap javascript
(around line 360). Replace them with an equivalent block for scripts:

root_folder.html.twig

{% javascripts 'assets/js/*" 9%
<script src="{{ asset_url }}"></script>
{% endj avascripts %

Let's finish this by fixing the design images. Locate the <i ng> tag with " i mages/ 128_bi ke_whi
te_avenir. png". Change the src to {{
asset (' assets/images/ 128 bi ke_white_avenir.png') }}:

root_folder.html.twig

<inmg alt="Brand" src="{{
asset (' assets/inmages/ 128 hi ke_white_avenir.png') }}">

Do the same for "i mages/ | ogo_j ust _| etters. png" and refresh the page. The design should
now be in order, with the logo, fonts and colors as the first image of this page.

Rendering the content

At this point, the r oot _f ol der. ht ml . t wi g template is static. It doesn't render any dynamic data
from the repository.

The root is rendered by the ez_cont ent : vi ewAct i on controller action. This action assigns the
currently viewed content as the cont ent Twig variable. We will use that variable to display some
of the fields from the root content. Replace the central section of the template, around line 90, with
the following block:

http://symfony.com/doc/current/cookbook/assetic/asset_management.html#including-css-stylesheets

root_folder.html.twig

<section class="buttons">
<di v class="contai ner">
<div class="row regul ar-content-size">
<div class="col -xs-10 col -xs-offset-1
box-styl e">
<h3 cl ass="center bottom pl us
new header">{{ ez_content_nane(content) }}</h3>
<div class="col-xs-10 text-justified">{{
ez_render_field(content, 'description') }}</div>
</ di v>
</ di v>
</ di v>
</ section>

The page will now show the values of title and description fields of the root Platform Content.

Extracting the layout

The general layout of the site, with the navigation, footer, scripts, etc., is written down in the
template we use to render the root. Let's extract the part that is common to all the pages so that we
can re-use it.

Twig supports a powerful template inheritance api. Templates may declare named blocks. Any
template may extend other templates, and modify the blocks defined by its parents.

Create a new app/ Resour ces/ vi ews/ pagel ayout . ht nl . t wi g template and copy the
contents of the current r oot _f ol der. ht m . t wi g into it. Change the central section from the
previous chapter as follows:

pagelayout.html.twig

<section class="buttons">
<di v class="container">
<div class="row regul ar-content-size">
<div class="col -xs-10 col -xs-of fset-1
box-styl e">
{% bl ock content %
{% endbl ock %
</ di v>
</ di v>
</ di v>
</ section>

This defines a block named "content". Other templates can add content to it, so that the result of
the execution of the controller is contained within the site's general layout.

Editr oot _fol der. htm . tw g and replace the whole content of the file with the following code:

http://twig.sensiolabs.org/doc/templates.html#template-inheritance

root_folder.html.twig

{% ext ends "pagel ayout.htm .twi g" %

{% bl ock content %

<h3 cl ass="center bottom plus new header">{{
ez_content_nane(content) }}</h3>

<div class="col -xs-10 text-justified" >{{
ez_render_field(content, 'description') }}</div>
{% endbl ock %

This will re-use pagel ayout . ht n . t wi g and replace the cont ent block with the title and
description from the root folder. We could easily create more blocks in the pagelayout so that
templates can modify other parts of the page (footer, head, navigation), and we will over the course
of this tutorial. We can now create more templates that inherit from pagel ayout . ht m . twi g,
and customize how content is rendered.

Let's do it for the Ride Content Type.

Next: Step 3 - Create your content model >

< Previous: Step 1 - Getting Ready

https://doc.ez.no/display/TECHDOC/Step+3+-+Create+your+content+model
https://doc.ez.no/display/TECHDOC/Step+1+-+Getting+Ready

	Step 2 - Customizing the general layout

