
SiteAccess
Introduction

eZ Platform allows you to maintain multiple sites in one installation using a feature called siteacces
.ses

In short, a siteaccess is a set of configuration settings that is used when the site is reached through
a specific address.

When the user accesses the site, the system analyzes the uri and compares it to rules specified in
the configuration. If it finds a set of fitting rules, this siteaccess is used.

What does a siteaccess do?

A siteaccess overrides the default configuration. This means that if the siteaccess does not specify
some aspect of the configuration, the default values will be used. The default configuration is also
used when no siteaccess can be matched to a situation.

A siteaccess can decide many things about the website, for example the database, language or var
directory that are used.

How is a siteaccess selected?

A siteaccess is selected using one or more matchers – rules based on the uri or its parts. Example
matching criteria are elements of the uri, host name (or its parts), port number, etc.

For detailed information on how siteaccess matchers work, see .Siteaccess Matching

What can you use siteaccesses for?

Typical uses of a siteaccess are:

different language versions of the same site identified by a uri part; one siteaccess for one
language
two different versions of a website: one siteaccess with a public interface for visitors and
one with a restricted interface for administrators

Both the rules for siteaccess matching and its effects are located in the main app/config/ezplatfor
configuration file.m.yml

Use case: multilanguage sites

A site has content in two languages: English and Norwegian. It has one URI per language: http://ex
 and http://example.com/nor. Uri parts of each language (eng, nor) are mapped to a ample.com/eng

, commonly named like the uri part: , . Using semantic configuration, each ofsiteaccess eng nor
these siteaccesses can be assigned a prioritized list of languages it should display:

The English site would display content in English and ignore Norwegian content;
The Norwegian site would display content in Norwegian but also in English if it does not

.exist in Norwegian

Such configuration would look like this:

In this topic:

Introduction
What does a
siteaccess do?
How is a siteaccess
selected?
What can you use
siteaccesses for?
Use case:
multilanguage sites
The default scope

Configuration
Basics

Example
Dynamic
configuration with
the ConfigResolver

Scope
ConfigResol
ver Usage
Inject the
ConfigResol
ver in your
services

Custom locale
configuration
Siteaccess Matching

Available
matchers
Compound
siteaccess
matcher
Matching by
request
header
Matching by
environment
variable
URILexer
and
semanticPat
hinfo

Usage
Cross-siteacess
links

Troubleshoo
ting
Under the
hood

Dynamic Settings
Injection

Syntax
DynamicSet
tingParser
Limitations
Examples

Related topics:

Cross-siteaccess links

Setting the Index Page

https://doc.ez.no/display/DEVELOPER/SiteAccess#SiteAccess-SiteaccessMatching
https://doc.ez.no/display/DEVELOPER/SiteAccess#SiteAccess-Cross-siteacesslinks
https://doc.ez.no/display/DEVELOPER/Multisite#Multisite-SettingTheIndexPage

ezpublish:
 siteaccess:
 # There are two siteaccess
 list: [eng, nor]

 # eng is the default one if no prefix is specified
 default_siteaccess: eng

 # the first URI of the element is used to find a
siteaccess with a similar name
 match:
 URIElement: 1

ezpublish:
 # root node for configuration per siteaccess
 system:
 # Configuration for the 'eng' siteaccess
 eng:
 languages: [eng-GB]
 nor:
 languages: [nor-NO, eng-GB]

The default scope

When no particular context is required, it is fine to use the `default` scope instead of specifying a
siteaccess.

Configuration

Basics

Basic configuration handling in eZ Platform is similar to what is commonly possible with Symfony.
Regarding this, you can define key/value pairs in , under the main your configuration files paramete

 key (like in).rs parameters.yml

Internally and by convention, keys follow a where the different segments follow yourdot syntax
configuration hierarchy. Keys are usually prefixed by a corresponding to yournamespace
application. Values can be anything, .including arrays and deep hashes

Important
Configuration is tightly related to the service container.
To fully understand the following content, you need to be familiar with Symfony's service

 and .container its configuration

eZ Platform core configuration is prefixed by namespace, while confiezsettings internal
guration (not to be used directly) is prefixed by namespace.ezpublish

For configuration that is meant to be exposed to an end-user (or end-developer), it's
usually a good idea to also .implement semantic configuration

Note that it is also possible to .implement SiteAccess aware semantic configuration

http://symfony.com/doc/current/book/service_container.html#importing-other-container-configuration-resources
https://github.com/ezsystems/ezpublish5/blob/master/app/config/parameters.yml.dist
https://doc.ez.no/display/DEVELOPER/Service+Container
https://doc.ez.no/display/DEVELOPER/Service+Container
http://symfony.com/doc/current/book/service_container.html#service-parameters
http://symfony.com/doc/current/components/config/definition.html
https://doc.ez.no/display/DEVELOPER/Exposing+SiteAccess-aware+configuration+for+your+bundle

1.
2.
3.
4.

Example

parameters:
 myapp.parameter.name: someValue
 myapp.boolean.param: true
 myapp.some.hash:
 foo: bar
 an_array: [apple, banana, pear]

// Inside a controller
$myParameter = $this->container->getParameter(
'myapp.parameter.name');

Dynamic configuration with the ConfigResolver

In eZ Platform it is fairly common to have different settings depending on the current siteaccess
(e.g. languages, configuration).view provider

Scope

Dynamic configuration can be resolved depending on a .scope

Available scopes are (in order of precedence) :

global
SiteAccess
SiteAccess group
default

It gives the opportunity to define settings for a given siteaccess, for instance, like in the legacy INI
.override system

This mechanism is not limited to eZ Platform internal settings (aka) and is namespaceezsettings
applicable for specific needs (bundle-related, project-related, etc.).

ConfigResolver Usage

Dynamic configuration is handled by a . It consists in a service object mainlyconfig resolver
exposing and methods. The idea is to check the different hasParameter() getParameter() sc

 available for a given to find the appropriate parameter.opes namespace

In order to work with the config resolver, your dynamic settings must comply internally with the
following name format: .<namespace>.<scope>.parameter.name

Configuration

Usage from a controller

Always prefer semantic configuration especially for internal eZ settings.
Manually editing internal eZ settings is possible, but at your own risk, as unexpected
behavior can occur.

The following configuration is inside the code of eZan example of internal usage
Platform.

https://doc.ez.no/display/DEVELOPER/Content+Rendering#ContentRendering-Viewproviderconfiguration
http://doc.ez.no/eZ-Publish/Technical-manual/4.x/Concepts-and-basics/Configuration
http://doc.ez.no/eZ-Publish/Technical-manual/4.x/Concepts-and-basics/Configuration

1.
2.

3.

parameters:
 # Some internal configuration
 ezsettings.default.content.default_ttl: 60
 ezsettings.ezdemo_site.content.default_ttl: 3600

 # Here "myapp" is the namespace, followed by the
siteaccess name as the parameter scope
 # Parameter "foo" will have a different value in
ezdemo_site and ezdemo_site_admin
 myapp.ezdemo_site.foo: bar
 myapp.ezdemo_site_admin.foo: another value
 # Defining a default value, for other siteaccesses
 myapp.default.foo: Default value

 # Defining a global setting, used for all
siteaccesses
 #myapp.global.some.setting: This is a global value

// Inside a controller, assuming siteaccess being
"ezdemo_site"
/** @var $configResolver
\eZ\Publish\Core\MVC\ConfigResolverInterface **/
$configResolver = $this->getConfigResolver();

// ezsettings is the default namespace, so no need to
specify it
// The following will resolve
ezsettings.<siteaccessName>.content.default_ttl
// In the case of ezdemo_site, will return 3600.
// Otherwise it will return the value for
ezsettings.default.content.default_ttl (60)
$locationViewSetting = $configResolver->getParameter(
'content.default_ttl');

$fooSetting = $configResolver->getParameter('foo',
'myapp');
// $fooSetting's value will be 'bar'

// Force scope
$fooSettingAdmin = $configResolver->getParameter('foo',
'myapp', 'ezdemo_site_admin');
// $fooSetting's value will be 'another value'

// Note that the same applies for hasParameter()

Both and can take 3 different arguments:getParameter() hasParameter()

$paramName (i.e. the name of the parameter you need)
$namespace (i.e. your application namespace, in the previous example. If null, themyapp
default namespace will be used, which is by default)ezsettings
$scope (i.e. a siteaccess name. If null, the current siteaccess will be used)

Namespace + scope example

Inject the ConfigResolver in your services

You can use the in your own services whenever needed. To do this, just inject theConfigResolver
:serviceezpublish.config.resolver

parameters:
 my_service.class: My\Cool\Service

services:
 my_service:
 class: %my_service.class%
 arguments: [@ezpublish.config.resolver]

<?php
namespace My\Cool;

use eZ\Publish\Core\MVC\ConfigResolverInterface;

class Service
{
 /**
 * @var \eZ\Publish\Core\MVC\ConfigResolverInterface
 */
 private $configResolver;

 public function __construct(ConfigResolverInterface
$configResolver)
 {
 $this->configResolver = $configResolver;
 $myParam = $this->configResolver->getParameter(
'foo', 'myapp');
 }

 // ...
}

Custom locale configuration

If you need to use a custom locale they can also be configurable in , addingezplatform.yml
them to the :conversion map

Instead of injecting the whole ConfigResolver service, you may directly inject your
.SiteAccess-aware settings (aka dynamic settings) into your own services

https://doc.ez.no/display/DEVELOPER/SiteAccess#SiteAccess-DynamicSettingsInjection
https://doc.ez.no/display/DEVELOPER/SiteAccess#SiteAccess-DynamicSettingsInjection

ezpublish:
 # Locale conversion map between eZ Publish format
(i.e. fre-FR) to POSIX (i.e. fr_FR).
 # The key is the eZ Publish locale. Check locale.yml
in EzPublishCoreBundle to see natively supported
locales.
 locale_conversion:
 eng-DE: en_DE

A locale example .conversion map can be found in the bundle, on core locale.yml

Siteaccess Matching

Siteaccess matching is done through objects. You caneZ\Publish\MVC\SiteAccess\Matcher
configure this matching and even develop custom matchers.

To be usable, every siteaccess must be provided a matcher.

You can configure siteaccess matching in your main :app/config/ezplatform.yml

ezpublish:
 siteaccess:
 default_siteaccess: ezdemo_site
 list:
 - ezdemo_site
 - eng
 - fre
 - fr_eng
 - ezdemo_site_admin
 groups:
 ezdemo_site_group:
 - ezdemo_site
 - eng
 - fre
 - fr_eng
 - ezdemo_site_admin
 match:
 Map\URI:
 ezdemo_site: ezdemo_site
 fre: fre
 ezdemo_site_admin: ezdemo_site_admin

You need to set several parameters:

ezpublish.siteaccess.default_siteaccess
ezpublish.siteaccess.list
(optional) ezpublish.siteaccess.groups
ezpublish.siteaccess.match

ezpublish.siteaccess.default_siteaccess is the default siteaccess that will be used if matching
was not successful. This ensures that a siteaccess is always defined.

ezpublish.siteaccess.list is the list of all available siteaccesses in your website.

(optional) defines which groups siteaccesses belong to. This isezpublish.siteaccess.groups
useful when you want to mutualize settings between several siteaccesses and avoid config

ezplatform.yml

https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Bundle/EzPublishCoreBundle/Resources/config/locale.yml

duplication. Siteaccess groups are treated the same as regular siteaccesses as far as configuration
is concerned.

ezpublish.siteaccess.match holds the matching configuration. It consists in a hash where the key
 is the name of the matcher class. If the matcher class doesn't start with a \ , it will be considered

 relative to eZ\Publish\MVC\SiteAccess\Matcher (e.g. Map\Host will refer to eZ\Publish
)\MVC\SiteAccess\Matcher\Map\Host

Available matchers

Name Description Configuration Example

URIElement Maps a URI element to a
siteaccess.
This is the default
matcher used when
choosing
URI matching in setup
wizard.

The element number you
want to match (starting
from 1).

ezpubl
ish:

siteac
cess:

match:

URIEle
ment:
1

 When usingImportant:
a value > 1, it will
concatenate the
elements with _

URI: /ezdemo_site/f
oo/bar

Element number: 1
:Matched siteaccess

ezdemo_site

Element number: 2
:Matched siteaccess

ezdemo_site_foo

A siteaccess can be part of several groups.

A siteaccess configuration has always precedence on the group configuration.

Every can be specified with a (e.g. custom matcher fully qualified class name \My\S
) or by a (e.g. iteAccess\Matcher service identifier prefixed by @ @my_matcher_s

).ervice

In the case of a fully qualified class name, the matching configuration will be
passed in the constructor.
In the case of a service, it must implement eZ\Bundle\EzPublishCoreBund

. The matching configuration will be passed to le\SiteAccess\Matcher setM
.atchingConfiguration()

Make sure to type the matcher in correct case. If it is in wrong case like "Uri" instead of
"URI," it will happily work on systems like Mac OS X because of case insensitive file
system, but will fail when you deploy it to a Linux server. This is a known artifact of PSR-

 of PHP classes.0 autoloading

http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/psr/psr-0/

URIText Matches URI using apre
nd/or sub-strings post
in the first URI segment

The prefix and/or suffix
(none are required)

ezpubl
ish:

siteac
cess:

match:

URITex
t:

prefix
: foo

suffix
: bar

URI: /footestbar/my
/content

Prefix: foo
: barSuffix

:Matched siteaccess
test

HostElement Maps an element in the
host name to a
siteaccess.

The element number you
want to match (starting
from 1).

ezpubl
ish:

siteac
cess:

match:

HostEl
ement:
2

Host name: www.examp
le.com

Element number: 2
:Matched siteaccess

example

http://www.example.com
http://www.example.com

HostText Matches a siteaccess in
the host name,
using and/or supre post
b-strings.

The prefix and/or suffix
(none are required)

ezpubl
ish:

siteac
cess:

match:

HostTe
xt:

prefix
: www.

suffix
: .com

Host name: www.foo.c
om

Prefix: www.
: .comSuffix

: foo Matched siteaccess

http://www.foo.com
http://www.foo.com

Map\Host Maps a host name to a
siteaccess.

A hash map of
host/siteaccess

ezpubl
ish:

siteac
cess:

match:

Map\Ho
st:

www.fo
o.com:
foo_fr
ont

adm.fo
o.com:
foo_ad
min

www.ba
r-stuf
f.fr:
bar_fr
ont

adm.ba
r-stuf
f.fr:
bar_ad
min

Map:

www.foo.com =>
foo_front
admin.foo.com =>
foo_admin

Host name: www.examp
le.com

Matched siteaccess:
foo_front

In eZ
Enterprise,
when using
the Map\Hos

 matcher,t
you need to
provide the
following line
in your Twig
template (e.g.
in the head of
the main
template file):

{{
multidomai
n_access()
}}

http://www.foo.com
http://admin.foo.com
http://www.example.com
http://www.example.com

Map\URI Maps a URI to a
siteaccess

A hash map of
URI/siteaccess

ezpubl
ish:

siteac
cess:

match:

Map\UR
I:

someth
ing:
ezdemo
_site

foobar
:
ezdemo
site
admin

URI: /something/my/
content

Map:

something =>
ezdemo_site
foobar =>
ezdemo_site_admi
n

Matched siteaccess:
ezdemo_site

The name of
the Map\URI
matcher must
be the same
as the
siteaccess
name. This
also means
that only one
URI can be
addressed by
the same
matcher.

Map\Port Maps a port to a
siteaccess

A has map of
Port/siteaccess

ezpubl
ish:

siteac
cess:

match:

Match\
Port:

80:
foo

8080:
bar

URL: http://ezpubli
sh.dev:8080/my/con
tent

Map:

80: foo
8080: bar

Matched siteaccess: bar

Regex\Host Matches against a
regexp and extracts a
portion of it

The regexp to match
against
and the captured
element to use

ezpubl
ish:

siteac
cess:

match:

Regex\
Host:

regex:
"^(\\w
+_sa)$
"

#
Defaul
t is 1

itemNu
mber:
1

Host name: example_s
a

regex: ^(\\w+)_sa$
: 1itemNumber

Matched siteaccess:
example

http://ezpublish.dev:8080/my/content
http://ezpublish.dev:8080/my/content
http://ezpublish.dev:8080/my/content

Regex\URI Matches against a
regexp and extracts a
portion of it

The regexp to match
against
and the captured
element to use

ezpubl
ish:

siteac
cess:

match:

Regex\
URI:

regex:
"^/foo
(\\w+)
bar"

#
Defaul
t is 1

itemNu
mber:
1

URI: /footestbar/so
mething

regex: ^/foo(\\w+)bar
: 1itemNumber

Matched siteaccess:
test

Compound siteaccess matcher

The Compound siteaccess matcher allows you to combine several matchers together:

http://example.com/en matches site_en (match on host= URIElement(1)example.com and
=en)
http://example.com/fr matches site_fr (match on host= URIElement(1)=fr)example.com and
http://admin.example.com matches site_admin (match on host=)admin.example.com

Compound matchers cover the legacy matching feature. host_uri

They are based on logical combinations, or/and, using logical compound matchers:

Compound\LogicalAnd
Compound\LogicalOr

Each compound matcher will specify two or more sub-matchers. A rule will match if all the
matchers, combined with the logical matcher, are positive. The example above would have used M

 and ., combined with a . When both the URI and host match, theap\Host Map\Uri LogicalAnd
siteaccess configured with "match" is used.

http://example.com/en
http://example.com
http://example.com/fr
http://example.com
http://admin.example.com
http://admin.example.com

ezpublish:
 siteaccess:
 match:
 Compound\LogicalAnd:
 # Nested matchers, with their
configuration.
 # No need to precise their matching
values (true will suffice).
 site_en:
 matchers:
 Map\URI:
 en: true
 Map\Host:
 example.com: true
 match: site_en
 site_fr:
 matchers:
 Map\URI:
 fr: true
 Map\Host:
 example.com: true
 match: site_fr
 Map\Host:
 admin.example.com: site_admin

Matching by request header

It is possible to define which siteaccess to use by setting an header in your request.X-Siteaccess
This can be useful for REST requests.

In such case, must be the (e.g.).X-Siteaccess siteaccess name ezdemo_site

Matching by environment variable

It is also possible to define which siteaccess to use directly via an enviEZPUBLISH_SITEACCESS
ronment variable.

This is recommended if you want to get since no matching logic is done in thisperformance gain
case.

You can define this environment variable directly from your web server configuration:

This configuration assumes that mod_env is activated
<VirtualHost *:80>
 DocumentRoot "/path/to/ezpublish5/web/folder"
 ServerName example.com
 ServerAlias www.example.com
 SetEnv EZPUBLISH_SITEACCESS ezdemo_site
</VirtualHost>

ezplatform.yml

Apache VirtualHost example

This can also be done via PHP-FPM configuration file, if you use it. See PHP-FPM

http://php.net/manual/en/install.fpm.configuration.php#example-60

URILexer and semanticPathinfo

In some cases, after matching a siteaccess, it is neecessary to modify the original request URI.
This is for example needed with URI-based matchers since the siteaccess is contained in the
original URI and it is not part of the route itself.

The problem is addressed by this URI and by modifying it when needed through the analyzing URI
 interface.Lexer

/**
 * Interface for SiteAccess matchers that need to alter
the URI after matching.
 * This is useful when you have the siteaccess in the
URI like "/<siteaccessName>/my/awesome/uri"
 */
interface URILexer
{
 /**
 * Analyses $uri and removes the siteaccess part, if
needed.
 *
 * @param string $uri The original URI
 * @return string The modified URI
 */
 public function analyseURI($uri);
 /**
 * Analyses $linkUri when generating a link to a
route, in order to have the siteaccess part back in the
URI.
 *
 * @param string $linkUri
 * @return string The modified link URI
 */
 public function analyseLink($linkUri);
}

Once modified, the URI is stored in the request attribute, and the original semanticPathinfo
pathinfo is not modified.

Usage

Cross-siteacess links

When using the feature, it is sometimes useful to be able to betweemultisite generate cross-links
n the different sites.

 documentation for more information.

1.
2.
3.

Note about precedence
 The precedence order for siteaccess matching is the following (the first matched wins):

Request header
Environment variable
Configured matchers

URILexer interface

http://php.net/manual/en/install.fpm.configuration.php#example-60

This allows you to link different resources referenced in the same content repository, but configured
independently with different tree roots.

 {# Linking a location #}
<a href="{{ url('ez_urlalias', {'locationId': 42,
'siteaccess': 'some_siteaccess_name'}) }}">{{
ez_content_name(content) }}

{# Linking a regular route #}
<a href="{{ url("some_route_name", {"siteaccess":
"some_siteaccess_name"}) }}">Hello world!

namespace Acme\TestBundle\Controller;

use eZ\Bundle\EzPublishCoreBundle\Controller as
BaseController;
use
Symfony\Component\Routing\Generator\UrlGeneratorInterfac
e;

class MyController extends BaseController
{
 public function fooAction()
 {
 // ...

 $location =
$this->getRepository()->getLocationService()->loadLocati
on(123);
 $locationUrl = $this->generateUrl(
 $location,
 array('siteaccess' =>
'some_siteaccess_name'),
 UrlGeneratorInterface::ABSOLUTE_PATH
);

 $regularRouteUrl = $this->generateUrl(
 'some_route_name',
 array('siteaccess' =>
'some_siteaccess_name'),
 UrlGeneratorInterface::ABSOLUTE_PATH
);

 // ...
 }
}

Twig example

See documentation page, for more information about linking to a Location ez_urlalias

PHP example

https://doc.ez.no/display/DEVELOPER/Content+Rendering#ContentRendering-ez_urlalias

Troubleshooting

The , so be careful when using matchers first matcher succeeding always wins catch-all
like .URIElement
If passed siteaccess name is not a valid one, an will beInvalidArgumentException
thrown.
If matcher used to match the provided siteaccess doesn't implement VersatileMatcher
, the link will be generated for the current siteaccess.
When using , all inner matchers . If at least oneCompound\LogicalAnd must match
matcher doesn't implement , it will fail.VersatileMatcher
When using , the first inner matcher succeeding will win.Compound\LogicalOr

Under the hood

To implement this feature, a new was added to allow siteaccess matchers toVersatileMatcher
be able to .reverse-match
All existing matchers implement this new interface, except the Regexp based matchers which have
been deprecated.

The siteaccess router has been added a method to reflect this addition. AbstractmatchByName()
URLGenerator and have been updated as well.DefaultRouter

Dynamic Settings Injection

Before 5.4, if you wanted to implement a service needing siteaccess-aware settings (e.g. language
settings), you needed to inject the whole ()ConfigResolver ezpublish.config.resolver
and get the needed settings from it. This was neither very convenient nor explicit.

The goal of this feature is to allow developers to inject these dynamic settings explicitly from their
service definition (yml, xml, annotation, etc.).

Syntax

Static container parameters follow the syntax in Symfony.%<parameter_name>%

Dynamic parameters have the following: $<parameter_name>[; <namespace>[;
, default namespace being , and default scope being the current<scope>]]$ ezsettings

siteaccess.

DynamicSettingParser

Important
As siteaccess matchers can involve hosts and ports, it is tohighly recommended
generate cross-siteaccess links in an absolute form (e.g. using Twig helper).url()

Note
Siteaccess router public methods have also been extracted to a new interface, SiteAcc

.essRouterInterface

Landing Page - Known limitation
In eZ Studio's Landing Page you can encounter a 404 error when clicking a relative link
which points to a different siteaccess (if the Content item being previewed does not exist
in the previously used siteaccess). This is because detecting siteaccesses when
navigating in preview is not functional yet. This is a known limitation that is awaiting
resolution.

For more information, see .ConfigResolver documentation

https://doc.ez.no/display/DEVELOPER/SiteAccess#SiteAccess-Configuration

This feature also introduces a service that can be used for adding support ofDynamicSettingParser
the dynamic settings syntax.
This service has for ID and implementsezpublish.config.dynamic_setting.parser eZ\B
undle\EzPublishCoreBundle\DependencyInjection\Configuration\SiteAccessAwa

.re\DynamicSettingParserInterface

Limitations

A few limitations still remain:

It is not possible to use dynamic settings in your semantic configuration (e.g. config.yml
or) ezplatform.yml as they are meant primarily for parameter injection in services.
It is not possible to define an array of options having dynamic settings. They will not be
parsed. Workaround is to use separate arguments/setters.
Injecting dynamic settings in request listeners is , as it won't benot recommended
resolved with the correct scope (request listeners are instantiated before SiteAccess

). Workaround is to inject the ConfigResolver instead, and resolving the setting inmatch
your method (or equivalent).onKernelRequest

Examples

Injecting an eZ parameter

Defining a simple service needing parameter (i.e. prioritized languages).languages

Before 5.4

parameters:
 acme_test.my_service.class:
Acme\TestBundle\MyServiceClass

services:
 acme_test.my_service:
 class: %acme_test.my_service.class%
 arguments: [@ezpublish.config.resolver]

namespace Acme\TestBundle;

Note
Internally, parameter is defined as languages ezsettings.<siteaccess_name>.l

, being eZ internal .anguages ezsettings namespace

use eZ\Publish\Core\MVC\ConfigResolverInterface;

class MyServiceClass
{
 /**
 * Prioritized languages
 *
 * @var array
 */
 private $languages;

 public function __construct(ConfigResolverInterface
$configResolver)
 {
 $this->languages =
$configResolver->getParameter('languages');
 }
}

After, with setter injection (preferred)

parameters:
 acme_test.my_service.class:
Acme\TestBundle\MyServiceClass

services:
 acme_test.my_service:
 class: %acme_test.my_service.class%
 calls:
 - [setLanguages, ["$languages$"]]

namespace Acme\TestBundle;

class MyServiceClass
{
 /**
 * Prioritized languages
 *
 * @var array
 */
 private $languages;

 public function setLanguages(array $languages =
null)
 {
 $this->languages = $languages;
 }
}

After, with constructor injection

parameters:
 acme_test.my_service.class:
Acme\TestBundle\MyServiceClass

services:
 acme_test.my_service:
 class: %acme_test.my_service.class%
 arguments: ["$languages$"]

namespace Acme\TestBundle;

class MyServiceClass
{
 /**
 * Prioritized languages
 *
 * @var array
 */
 private $languages;

 public function __construct(array $languages)
 {
 $this->languages = $languages;
 }
}

Injecting 3rd party parameters

Important: Ensure you always add as a default value, especially if the argument isnull
type-hinted.

Tip
Setter injection for dynamic settings should always be preferred, as it makes it possible
to update your services that depend on them when ConfigResolver is updating its scope
(e.g. when previewing content in a given SiteAccess). However, only one dynamic

 setting should be injected by setter .

Constructor injection will make your service be reset in that case.

parameters:
 acme_test.my_service.class:
Acme\TestBundle\MyServiceClass
 # "acme" is our parameter namespace.
 # Null is the default value.
 acme.default.some_parameter: ~
 acme.ezdemo_site.some_parameter: foo
 acme.ezdemo_site_admin.some_parameter: bar

services:
 acme_test.my_service:
 class: %acme_test.my_service.class%
 # The following argument will automatically
resolve to the right value, depending on the current
SiteAccess.
 # We specify "acme" as the namespace we want to
use for parameter resolving.
 calls:
 - [setSomeParameter,
["$some_parameter;acme$"]]

namespace Acme\TestBundle;
class MyServiceClass
{
 private $myParameter;
 public function setSomeParameter($myParameter =
null)
 {
 // Will be "foo" for ezdemo_site, "bar" for
ezdemo_site_admin, or null if another SiteAccess.
 $this->myParameter = $myParameter;
 }
}

	SiteAccess

