SiteAccess
Introduction

eZ Platform allows you to maintain multiple sites in one installation using a feature called siteacces
ses.

In short, a siteaccess is a set of configuration settings that is used when the site is reached through
a specific address.

When the user accesses the site, the system analyzes the uri and compares it to rules specified in
the configuration. If it finds a set of fitting rules, this siteaccess is used.

What does a siteaccess do?

A siteaccess overrides the default configuration. This means that if the siteaccess does not specify
some aspect of the configuration, the default values will be used. The default configuration is also
used when no siteaccess can be matched to a situation.

A siteaccess can decide many things about the website, for example the database, language or var
directory that are used.

How is a siteaccess selected?

A siteaccess is selected using one or more matchers — rules based on the uri or its parts. Example
matching criteria are elements of the uri, host name (or its parts), port number, etc.

For detailed information on how siteaccess matchers work, see Siteaccess Matching.

What can you use siteaccesses for?

Typical uses of a siteaccess are:

* different language versions of the same site identified by a uri part; one siteaccess for one
language

® two different versions of a website: one siteaccess with a public interface for visitors and
one with a restricted interface for administrators

Both the rules for siteaccess matching and its effects are located in the main app/config/ezplatfor
m.yml configuration file.

Use case: multilanguage sites

A site has content in two languages: English and Norwegian. It has one URI per language: http://ex
ample.com/eng and http://example.com/nor. Uri parts of each language (eng, nor) are mapped to a
siteaccess, commonly named like the uri part: eng, nor . Using semantic configuration, each of
these siteaccesses can be assigned a prioritized list of languages it should display:

® The English site would display content in English and ignore Norwegian content;
®* The Norwegian site would display content in Norwegian but also in English if it does not
exist in Norwegian.

Such configuration would look like this:

In this topic:

® |ntroduction

® \What does a
siteaccess do?

® How is a siteaccess
selected?

® What can you use
siteaccesses for?

® Use case:
multilanguage sites

® The default scope

® Configuration

® Basics

Example

® Dynamic
configuration with
the ConfigResolver

Scope
ConfigResol
ver Usage
Inject the
ConfigResol
ver in your
services

® Custom locale
configuration
® Siteaccess Matching

® Usage

Available
matchers
Compound
siteaccess
matcher
Matching by
request
header
Matching by
environment
variable
URILexer
and
semanticPat
hinfo

® Cross-siteacess

links
[J

Troubleshoo
ting

Under the
hood

® Dynamic Settings

Injection
L]

Related topics:

Cross-siteaccess links

Setting the Index Page

Syntax
DynamicSet
tingParser
Limitations
Examples

https://doc.ez.no/display/DEVELOPER/SiteAccess#SiteAccess-SiteaccessMatching
https://doc.ez.no/display/DEVELOPER/SiteAccess#SiteAccess-Cross-siteacesslinks
https://doc.ez.no/display/DEVELOPER/Multisite#Multisite-SettingTheIndexPage

ezpubl i sh:

siteaccess:
There are two siteaccess
list: [eng, nor]

eng is the default one if no prefix is specified
defaul t _siteaccess: eng

the first URI of the elenent is used to find a
siteaccess with a sinilar nane
mat ch:
URI El ement: 1

ezpubl i sh:
root node for configuration per siteaccess
system
Configuration for the '"eng' siteaccess
eng:
| anguages: [eng- GB]
nor:

| anguages: [nor-NO, eng- GB]

The default scope

When no particular context is required, it is fine to use the “default™ scope instead of specifying a
siteaccess.

Configuration
Basics

Important
Configuration is tightly related to the service container.
To fully understand the following content, you need to be familiar with Symfony's service

container and its configuration.

Basic configuration handling in eZ Platform is similar to what is commonly possible with Symfony.
Regarding this, you can define key/value pairs in your configuration files, under the main paramete
rs key (like in parameters.yml).

Internally and by convention, keys follow a dot syntax where the different segments follow your
configuration hierarchy. Keys are usually prefixed by a namespace corresponding to your
application. Values can be anything, including arrays and deep hashes.

eZ Platform core configuration is prefixed by ezsettings namespace, while internal confi
guration (not to be used directly) is prefixed by ezpublish namespace.

For configuration that is meant to be exposed to an end-user (or end-developer), it's
usually a good idea to also implement semantic configuration.

Note that it is also possible to implement SiteAccess aware semantic configuration.

http://symfony.com/doc/current/book/service_container.html#importing-other-container-configuration-resources
https://github.com/ezsystems/ezpublish5/blob/master/app/config/parameters.yml.dist
https://doc.ez.no/display/DEVELOPER/Service+Container
https://doc.ez.no/display/DEVELOPER/Service+Container
http://symfony.com/doc/current/book/service_container.html#service-parameters
http://symfony.com/doc/current/components/config/definition.html
https://doc.ez.no/display/DEVELOPER/Exposing+SiteAccess-aware+configuration+for+your+bundle

Example

Configuration

par anet ers:
nyapp. par anet er. nane: soneVal ue
nmyapp. bool ean. param true
nyapp. sone. hash:
foo: bar
an_array: [apple, banana, pear]

Usage from a controller

/'l Inside a controller
$nyPar anet er = $t hi s- >cont ai ner - >get Par anet er (
'nyapp. par anet er. nane');

Dynamic configuration with the ConfigResolver

In eZ Platform it is fairly common to have different settings depending on the current siteaccess
(e.g. languages, view provider configuration).

Scope

Dynamic configuration can be resolved depending on a scope.
Available scopes are (in order of precedence) :

global
SiteAccess
SiteAccess group
default

PwbpE

It gives the opportunity to define settings for a given siteaccess, for instance, like in the legacy INI
override system.

This mechanism is not limited to eZ Platform internal settings (aka ezsettings namespace) and is
applicable for specific needs (bundle-related, project-related, etc.).

Always prefer semantic configuration especially for internal eZ settings.
Manually editing internal eZ settings is possible, but at your own risk, as unexpected
behavior can occur.

ConfigResolver Usage

Dynamic configuration is handled by a config resolver. It consists in a service object mainly
exposing hasPar anet er () and get Par anet er () methods. The idea is to check the different sc
opes available for a given namespace to find the appropriate parameter.

In order to work with the config resolver, your dynamic settings must comply internally with the
following name format: <nanespace>. <scope>. par anet er . nane.

The following configuration is an example of internal usage inside the code of eZ
Platform.

https://doc.ez.no/display/DEVELOPER/Content+Rendering#ContentRendering-Viewproviderconfiguration
http://doc.ez.no/eZ-Publish/Technical-manual/4.x/Concepts-and-basics/Configuration
http://doc.ez.no/eZ-Publish/Technical-manual/4.x/Concepts-and-basics/Configuration

Namespace + scope example

par anet ers:
Some internal configuration
ezsettings.default.content.default_ttl: 60
ezsettings. ezdeno_site.content.default _ttl: 3600

Here "nyapp" is the nanmespace, followed by the
siteaccess nanme as the paraneter scope

Paranmeter "foo" will have a different value in
ezdeno_site and ezdenp_site_adm n

nyapp. ezdeno_site.foo: bar

nyapp. ezdeno_site_adm n. f oo: anot her val ue

Defining a default value, for other siteaccesses

nyapp. defaul t. foo: Default val ue

Defining a global setting, used for all
si teaccesses
#nyapp. gl obal . sone. setting: This is a global value

/1 Inside a controller, assum ng siteaccess being
"ezdeno_site"

/** @ar $configResol ver

\ eZ\ Publ i sh\ Cor e\ WCQC\ Confi gResol verInterface **/
$confi gResol ver = $t hi s->get Confi gResol ver ();

/'l ezsettings is the default nanmespace, so no need to
specify it

/1 The following will resolve

ezsettings. <siteaccessNane>. content.default ttl

/1 In the case of ezdenp_site, will return 3600.

/l Gherwise it will return the value for
ezsettings.default.content.default_ttl (60)

$l ocationVi ewSetting = $confi gResol ver - >get Par anet er (
"content.default _ttl');

$f ooSetting = $confi gResol ver - >get Paraneter('foo',
‘myapp');
/1 $fooSetting's value will be 'bar'

/'l Force scope

$f ooSet ti ngAdm n = $confi gResol ver - >get Paraneter('foo',
"nmyapp', 'ezdeno_site_adnin');

/1 $fooSetting's value will be 'another val ue'

/1 Note that the same applies for hasParaneter()

Both get Par anet er () and hasPar anet er () can take 3 different arguments:

1. $par amNane (i.e. the name of the parameter you need)

2. $nanespace (i.e. your application namespace, myapp in the previous example. If null, the
default namespace will be used, which is ezsettings by default)

3. $scope (i.e. a siteaccess name. If null, the current siteaccess will be used)

Inject the ConfigResolver in your services

Instead of injecting the whole ConfigResolver service, you may directly inject your
SiteAccess-aware settings (aka dynamic settings) into your own services.

You can use the ConfigResolver in your own services whenever needed. To do this, just inject the
ezpubl i sh. config.resol ver service:

par anet er s:
ny_service. cl ass: M\ Cool \ Service

servi ces:
ny_service:
cl ass: %ry_service.class%
argunents: [@zpublish.config.resolver]

<?php
nanmespace M\ Cool ;

use eZ\ Publ i sh\ Core\ WCQC\ Confi gResol ver | nterface;

class Service
{
/**
* @ar \ez\ Publish\Core\ M\WC\ Confi gResol verlnterface
*/
private $configResol ver;

public function __construct(ConfigResol verlnterface
$confi gResol ver)

{

$t hi s- >confi gResol ver = $confi gResol ver;
$nmyParam = $t hi s- >confi gResol ver - >get Par anet er (
"foo’, "nyapp’);
}

I

Custom locale configuration

If you need to use a custom locale they can also be configurable in ezpl at f orm ymi , adding
them to the conversion map:

https://doc.ez.no/display/DEVELOPER/SiteAccess#SiteAccess-DynamicSettingsInjection
https://doc.ez.no/display/DEVELOPER/SiteAccess#SiteAccess-DynamicSettingsInjection

ezpubl i sh:

Local e conversion map between eZ Publish fornat
(i.e. fre-FR) to POSIX (i.e. fr_FR).

The key is the eZ Publish |ocale. Check |ocale.ynm
in EzPublishCoreBundl e to see natively supported
| ocal es.

| ocal e_conversi on:

eng- DE: en_DE

A locale conversion map example can be found in the cor e bundle, on | ocal e. yml .

Siteaccess Matching

Siteaccess matching is done through eZ\Publish\MVC\SiteAccess\Matcher objects. You can
configure this matching and even develop custom matchers.

To be usable, every siteaccess must be provided a matcher.

You can configure siteaccess matching in your main app/config/ezplatform.yml:

ezplatform.yml

ezpubl i sh:
siteaccess:
defaul t _siteaccess: ezdenp_site

list:

- ezdenp_site

- eng

- fre

- fr_eng

- ezdenp_site_admn
gr oups:

ezdeno_site_group:
- ezdenp_site
- eng
- fre
- fr_eng
- ezdeno_site_adnin

mat ch:

Map\ URI :
ezdeno_site: ezdenp_site
fre: fre
ezdeno_site_admin: ezdenp_site_admin

You need to set several parameters:

ezpublish.siteaccess.default_siteaccess
ezpublish.siteaccess.list

(optional) ezpublish.siteaccess.groups
ezpublish.siteaccess.match

ezpublish.siteaccess.default_siteaccess is the default siteaccess that will be used if matching
was not successful. This ensures that a siteaccess is always defined.

ezpublish.siteaccess.list is the list of all available siteaccesses in your website.

(optional) ezpublish.siteaccess.groups defines which groups siteaccesses belong to. This is
useful when you want to mutualize settings between several siteaccesses and avoid config

https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Bundle/EzPublishCoreBundle/Resources/config/locale.yml

duplication. Siteaccess groups are treated the same as regular siteaccesses as far as configuration
is concerned.

A siteaccess can be part of several groups.

A siteaccess configuration has always precedence on the group configuration.

ezpublish.siteaccess.match holds the matching configuration. It consists in a hash where the key
is the name of the matcher class. If the matcher class doesn't start with a \ , it will be considered

relative

to eZ\ Publ i sh\ M\/C\ Si t eAccess\ Mat cher (e.g. Map\ Host will refer to eZ\ Publ i sh

\ M\VC\ Si t eAccess\ Mat cher\ Map\ Host)

Every custom matcher can be specified with a fully qualified class name (e.g. \ M/\' S
i t eAccess\ Mat cher) or by a service identifier prefixed by @ (e.g. @ry_nat cher _s
ervice).

® In the case of a fully qualified class name, the matching configuration will be
passed in the constructor.

® |n the case of a service, it must implement eZ\ Bundl e\ EzPubl i shCor eBund
| e\ Si t eAccess\ Mat cher . The matching configuration will be passed to set M
at chi ngConfiguration().

Make sure to type the matcher in correct case. If it is in wrong case like "Uri" instead of
"URI," it will happily work on systems like Mac OS X because of case insensitive file
system, but will fail when you deploy it to a Linux server. This is a known artifact of PSR-
0 autoloading of PHP classes.

Available matchers

Name Description Configuration Example

URI El enent Maps a URI elementto a The element number you URI: / ezdenp_site/f
siteaccess. want to match (starting oo/ bar
This is the default from 1).
matcher used when Element number: 1
choosing Matched siteaccess:
URI matching in setup ezpubl ezdemo_site
wizard. i sh:

Element number: 2
Matched siteaccess:
siteac ezdemo_site_foo

cess:

mat ch:

URI El e
ment :
1

Important: When using
avalue > 1, it will
concatenate the
elements with _

http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/psr/psr-0/

URI Text Matches URI using pre a The prefix and/or suffix URI: / f oot est bar/ ny
nd/or post sub-strings (none are required) / cont ent
in the first URI segment

Prefix: foo

ezpubl Suffix: bar

i sh: Matched siteaccess:

: test

siteac

cess:

mat ch:

URI Tex

t:

prefix

foo
suf fix
bar
Host El enent Maps an element inthe The element number you Host name: ww. exanp
host name to a want to match (starting | e.com
siteaccess. from 1).

Element number: 2
Matched siteaccess:

ezpubl example

i sh:

siteac

cess:

mat ch:

Host El

enent :

2

http://www.example.com
http://www.example.com

Host Text

Matches a siteaccess in The prefix and/or suffix
the host name, (none are required)
using pre and/or post su
b-strings.

ezpubl

i sh:

si teac
cess:

mat ch:

Host Te
Xt:

prefix
DWW

suffix
.com

Host name: www. f 00. c
om

Prefix: www.
Suffix: .com
Matched siteaccess: foo

http://www.foo.com
http://www.foo.com

Map\ Host Maps a host name to a A hash map of Map:
siteaccess. host/siteaccess
* www.foo.com =>
foo_front
ez publ ® admin.foo.com =>

i sh: foo_admin
Host name: www.examp

siteac le.com

cess: Matched siteaccess:

foo_front

mat ch:

Map\ Ho
st:

www. f o
0.com
foo_fr
ont

adm fo
0.com
foo_ad
nmn

www. ba
r-stuf
f.fr:
bar _fr
ont

adm ba
r-stuf
f.fr:
bar _ad
mn

Inez
Enterprise,
when using
the Map\ Hos
t matcher,
you need to
provide the
following line
in your Twig
template (e.g.
in the head of
the main
template file):

{H

mul ti donai
n_access()

1

http://www.foo.com
http://admin.foo.com
http://www.example.com
http://www.example.com

Map\ URI Maps a URI to a A hash map of
siteaccess URl/siteaccess

ezpubl
i sh:

siteac
cess:

mat ch:

Map\ UR
l:

sonet h
ing:

ezdeno
_site

f oobar
ezdeno

site
adm n

The name of
the Map\ URI
matcher must
be the same
as the
siteaccess
name. This
also means
that only one
URI can be
addressed by
the same
matcher.

URI: / soret hi ng/ ny/
cont ent

Map:

® something =>
ezdemo_site

* foobar =>
ezdemo_site_admi
n

Matched siteaccess:
ezdemo_site

Map\ Por t Maps a port to a A has map of URL: http://ezpubli
siteaccess Port/siteaccess sh. dev: 8080/ my/ con
tent

ezpubl Map:

i sh: ® 80: foo

® 8080: bar
si teac
cess:

Matched siteaccess: bar

mat ch:

Mat ch\
Port:

80:
foo

8080:
bar

Regex\ Host Matches against a The regexp to match Host name: exanpl e_s
regexp and extracts a against a
portion of it and the captured
element to use regex: N(\\ w+) _sa$
itemNumber: 1

ezpubl Matched siteaccess:
. example
i sh:

siteac
cess:

mat ch:

Regex\
Host :

regex:
"A\\w
+sa)$

Def aul
t is 1

i temNu
nber :

http://ezpublish.dev:8080/my/content
http://ezpublish.dev:8080/my/content
http://ezpublish.dev:8080/my/content

Regex\ URI Matches against a The regexp to match URI: / f oot est bar/ so

regexp and extracts a against net hi ng
portion of it and the captured
element to use regex: Mfoo(\\w+)bar

itemNumber: 1

ez publ Matched siteaccess:

. test
i sh:

siteac
cess:

mat ch:

Regex\
URI :

regex:
"~ foo
(\\w)
bar"

#
Def aul
t is 1

i temNu
nber :

Compound siteaccess matcher

The Compound siteaccess matcher allows you to combine several matchers together:

® http://example.com/en matches site_en (match on host=example.com and URIElement(1)
=en)

® http://example.com/fr matches site_fr (match on host=example.com and URIElement(1)=fr)

® http://admin.example.com matches site_admin (match on host=admin.example.com)

Compound matchers cover the legacy host_uri matching feature.
They are based on logical combinations, or/and, using logical compound matchers:

® Conpound\ Logi cal And
® Conpound\ Logi cal O

Each compound matcher will specify two or more sub-matchers. A rule will match if all the
matchers, combined with the logical matcher, are positive. The example above would have used M
ap\ Host and Map\ Uri ., combined with a Logi cal And. When both the URI and host match, the
siteaccess configured with "match” is used.

http://example.com/en
http://example.com
http://example.com/fr
http://example.com
http://admin.example.com
http://admin.example.com

ezplatform.yml

ezpubl i sh:
siteaccess:
mat ch:

Conpound\ Logi cal And:
Nested matchers, with their
configuration.
No need to precise their matching
values (true will suffice).
site_en:
mat chers:
Map\ URI :
en: true
Map\ Host :
exanpl e.com true
mat ch: site_en
site fr:
mat chers:
Map\ URI :
fr: true
Map\ Host :
exanpl e.com true
match: site_fr
Map\ Host :
adm n. exanpl e.com site_admn

Matching by request header

It is possible to define which siteaccess to use by setting an X-Siteaccess header in your request.
This can be useful for REST requests.

In such case, X-Siteaccess must be the siteaccess name (e.g. ezdemo_site).

Matching by environment variable

It is also possible to define which siteaccess to use directly via an EZPUBLISH_SITEACCESS envi
ronment variable.

This is recommended if you want to get performance gain since no matching logic is done in this
case.

You can define this environment variable directly from your web server configuration:

Apache VirtualHost example

This configuration assunes that nod_env is activated
<Virtual Host *:80>
Docunent Root "/ path/to/ ezpublish5/ web/fol der"
Server Nanme exanpl e. com
Server Ali as www. exanpl e. com
Set Env EZPUBLI SH_SI TEACCESS ezdenp_site
</ Vi rtual Host >

This can also be done via PHP-FPM configuration file, if you use it. See PHP-FPM

http://php.net/manual/en/install.fpm.configuration.php#example-60

documentation for more information.

Note about precedence
The precedence order for siteaccess matching is the following (the first matched wins):

1. Request header
2. Environment variable
3. Configured matchers

URILexer and semanticPathinfo

In some cases, after matching a siteaccess, it is neecessary to modify the original request URI.
This is for example needed with URI-based matchers since the siteaccess is contained in the
original URI and it is not part of the route itself.

The problem is addressed by analyzing this URI and by modifying it when needed through the URI
Lexer interface.

URILexer interface
/**

* Interface for SiteAccess matchers that need to alter
the URI after matching.
* This is useful when you have the siteaccess in the

URI |ike "/<siteaccessNanme>/ny/awesone/ uri"
*/
interface URI Lexer
{
/**

* Anal yses $uri and renoves the siteaccess part, if
needed.

*

* @aramstring $uri The original URI

* @eturn string The nodified URI

*/

public function anal yseURI ($uri);

/**

* Anal yses $linkUri when generating a link to a
route, in order to have the siteaccess part back in the

URI .
*
* @aramstring $linkUri
* @eturn string The nodified link URI
*/
public function anal yseLink($linkUi);
}

Once modified, the URI is stored in the semanticPathinfo request attribute, and the original
pathinfo is not modified.

Usage

Cross-siteacess links

When using the multisite feature, it is sometimes useful to be able to generate cross-links betwee
n the different sites.

http://php.net/manual/en/install.fpm.configuration.php#example-60

This allows you to link different resources referenced in the same content repository, but configured
independently with different tree roots.

Twig example

{# Linking a | ocation #}
<a href="{{ url("ez_urlalias', {'locationld : 42,
'siteaccess': 'sonme_siteaccess_nane'}) }}">{{
ez_content _nane(content) }}

{# Linking a regular route #}
<a href="{{ url("sone_route_nane", {"siteaccess":
"sone_siteaccess_nane"}) }}">Hello world!

See ez_urlalias documentation page, for more information about linking to a Location

PHP example

nanmespace Acne\ Test Bundl e\ Controll er;

use eZ\ Bundl e\ EzPubl i shCor eBundl e\ Control |l er as
BaseControl |l er;

use

Synf ony\ Conponent \ Rout i ng\ Generat or\ Url Generatorlnterfac
€,

class MyController extends BaseController

{
public function fooAction()
{
/1
$l ocation =
$t hi s- >get Reposi tory()->get Locati onService()->l oadLocat i
on(123);
$l ocationUrl = $this->generatelrl (
$l ocat i on,

array('siteaccess' =>
'sonme_si teaccess_nane'),
Ul Generatorlnterface:: ABSOLUTE_PATH

)

$regul arRouteUrl = $this->generateUrl (
' sone_rout e_nane',
array('siteaccess' =>
' sonme_siteaccess_nane'),
Url Generatorlnterface: : ABSOLUTE_PATH

)

11

https://doc.ez.no/display/DEVELOPER/Content+Rendering#ContentRendering-ez_urlalias

Important
As siteaccess matchers can involve hosts and ports, it is highly recommended to
generate cross-siteaccess links in an absolute form (e.g. using ur | () Twig helper).

Troubleshooting

® The first matcher succeeding always wins, so be careful when using catch-all matchers
like URI El errent .

* |f passed siteaccess name is not a valid one, an | nval i dAr gument Except i on will be
thrown.

® |f matcher used to match the provided siteaccess doesn't implement Ver sat i | eMat cher
, the link will be generated for the current siteaccess.

® When using Conpound\ Logi cal And, all inner matchers must match. If at least one
matcher doesn't implement Ver sat i | eMat cher, it will fail.

® When using Conpound\ Logi cal Or, the first inner matcher succeeding will win.

Under the hood

To implement this feature, a new Ver sat i | eMat cher was added to allow siteaccess matchers to
be able to reverse-match.

All existing matchers implement this new interface, except the Regexp based matchers which have
been deprecated.

The siteaccess router has been added a mat chByNane() method to reflect this addition. Abstract
URLGenerator and Def aul t Rout er have been updated as well.

Note
Siteaccess router public methods have also been extracted to a new interface, Si t eAcc
essRouterlnterface.

Landing Page - Known limitation

In eZ Studio's Landing Page you can encounter a 404 error when clicking a relative link
which points to a different siteaccess (if the Content item being previewed does not exist
in the previously used siteaccess). This is because detecting siteaccesses when
navigating in preview is not functional yet. This is a known limitation that is awaiting
resolution.

Dynamic Settings Injection

Before 5.4, if you wanted to implement a service needing siteaccess-aware settings (e.g. language
settings), you needed to inject the whole Conf i gResol ver (ezpubli sh. confi g. resol ver)
and get the needed settings from it. This was neither very convenient nor explicit.

The goal of this feature is to allow developers to inject these dynamic settings explicitly from their
service definition (yml, xml, annotation, etc.).

Syntax

Static container parameters follow the %<par anet er _nane>%syntax in Symfony.

Dynamic parameters have the following: $<par anet er _nanme>[; <namespace>[;
<scope>]] $, default namespace being ezset t i ngs, and default scope being the current
siteaccess.

For more information, see ConfigResolver documentation.

DynamicSettingParser

https://doc.ez.no/display/DEVELOPER/SiteAccess#SiteAccess-Configuration

This feature also introduces a DynamicSettingParser service that can be used for adding support of
the dynamic settings syntax.

This service has ezpubl i sh. confi g. dynami c_setti ng. parser for ID and implements ez\ B
undl e\ EzPubl i shCor eBundl e\ Dependencyl nj ecti on\ Confi gurati on\ Si t eAccessAna
re\ Dynami cSetti ngParserl|nterface.

Limitations

A few limitations still remain:

® |tis not possible to use dynamic settings in your semantic configuration (e.g. confi g. ym
or ezpl at f or m ynl) as they are meant primarily for parameter injection in services.

® |tis not possible to define an array of options having dynamic settings. They will not be
parsed. Workaround is to use separate arguments/setters.

® |njecting dynamic settings in request listeners is not recommended, as it won't be
resolved with the correct scope (request listeners are instantiated before SiteAccess
match). Workaround is to inject the ConfigResolver instead, and resolving the setting in
your onKer nel Request method (or equivalent).

Examples

Injecting an eZ parameter

Defining a simple service needing | anguages parameter (i.e. prioritized languages).

Note
Internally, | anguages parameter is defined as ezsetti ngs. <si t eaccess_nane>. |
anguages, ezset t i ngs being eZ internal namespace.

Before 5.4

par aneters:
acne_test.my_service.cl ass:
Acrre\ Test Bundl e\ MySer vi ceCl ass

services:
acme_t est. ny_service:
class: %acne_test. my_service.class%
argunents: [@zpublish.config.resolver]

namespace Acne\ Test Bundl e;

use eZ\ Publ i sh\ Cor e\ M\C\ Confi gResol verlnterface;

cl ass MyServiced ass

{

/**
* Prioritized | anguages

*

* @ar array
>/
private $l anguages;

public function __construct(ConfigResol verlnterface
$confi gResol ver)

{
$t hi s- >l anguages =
$confi gResol ver - >get Paranet er (' | anguages');
}
}

After, with setter injection (preferred)

par anet ers:
acne_test.ny_service.cl ass:
Acrre\ Test Bundl e\ MySer vi ced ass

servi ces:
acne_test.ny_service:
class: %acne_test.my_service.class%
calls:

- [setLanguages, ["$l anguages$"]]

nanmespace Acne\ Test Bundl e;

cl ass MyServiced ass

{

/**

* Prioritized | anguages

* @ar array

*/
private $l anguages;
public function setlLanguages(array $l anguages =
null)
{
$t hi s- >l anguages = $l anguages;
}

Important: Ensure you always add nul | as a default value, especially if the argument is
type-hinted.

After, with constructor injection

par anet ers:
acne_test. my_service. cl ass:
Acne\ Test Bundl e\ MySer vi ced ass

services:
acne_t est.ny_service:
class: %acne_test.my_service.class%
argunents: ["$l anguages$"]

namespace Acmne\ Test Bundl e;

cl ass MyServiced ass

{

/**

* Prioritized | anguages

* @ar array

*/
private $l anguages;
public function _ _construct(array $l anguages)
{

$t hi s- >l anguages = $l anguages;

}

}

Tip

Setter injection for dynamic settings should always be preferred, as it makes it possible
to update your services that depend on them when ConfigResolver is updating its scope
(e.g. when previewing content in a given SiteAccess). However, only one dynamic
setting should be injected by setter .

Constructor injection will make your service be reset in that case.

Injecting 3rd party parameters

par anet ers:
acne_test.nmy_service. cl ass:
Acrre\ Test Bundl e\ MySer vi ceC ass
"acme" is our paraneter nanmespace.
Null is the default val ue.
acne. defaul t. sone_paraneter: ~
acne. ezdeno_si te. sone_paraneter: foo
acne. ezdeno_site_adm n. some_paraneter: bar

services:
acnme_test. ny_service:

class: %acne_test. my_service.class%

The follow ng argument will automatically
resolve to the right value, depending on the current
Si t eAccess.

We specify "acme" as the nanespace we want to
use for paraneter resolving.

calls:

- [set SonePar anet er,
["$sone_paraneter; acne$"]]

namespace Acne\ Test Bundl e;
cl ass MyServiced ass

{

private $nyParaneter;

public function set SoneParaneter($nyParaneter =
nul |)

{

/1 WIl be "foo" for ezdeno_site, "bar" for
ezdeno_site_adnin, or null if another SiteAccess.
$t hi s- >nmyPar anet er = $nyPar anet er;

	SiteAccess

