
Content view
The ViewController
View selection
Content view template

Available variables
Making links to other locations
Render embedded content objects

Using ez_content controller
Available arguments

The ViewController

eZ Publish comes with a native controller to display your content, known as the . It is called each time you try to reach aViewController
content from its (URI generated for any content) and is able to render any content previously edited in the admin interfaceUrl Alias good looking
or via the .eZ Publish Public API

It can also be called directly by its direct URI : /content/location/<locationId>

A content can also have different (full page, abstract in a list, block in a landing page...). By default the view type is (for full page),view types full
but it can be anything (, ...).line block

View selection

To display a content, the ViewController uses a view manager which selects the appropriate template depending on matching rules.

Content view template

A content view template is like any other template, with several specific aspects.

Available variables

Variable name Type Description

location eZ\Publish\Core\Repository\Values\Content\Location The location object. Contains meta information on the content (Co
)ntentInfo

(only when accessing a location)

content eZ\Publish\Core\Repository\Values\Content\Content The content object, containing all fields and version information (V
)ersionInfo

noLayout Boolean If true, indicates if the content/location is to be displayed without
any pagelayout (i.e. AJAX, sub-requests...).
It's generally when displaying a content in view type . false full

viewBaseLayout String The base layout template to use when the view is requested to be
generated outside of the pagelayout (when is true).noLayout

Template inheritance

Like any template, a content view template can use . However keep in mind that your content can be also requested via template inheritance sub-r

Important note regarding visibility
Location visibility flag, which you can change with hide/unhide in admin, is not permission based and thus acts as a simple potential
filter. .It is not meant to restrict access to content

If you need to restrict access to a given content, use , which are permission based.Sections or Object states

For more information about the , please .view provider configuration refer to the dedicated page

https://doc.ez.no/display/EZP51/eZ+Publish+Public+API
https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/Repository/Values/Content/Location.php
https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/Repository/Values/Content/Content.php
https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/Repository/Values/Content/ContentInfo.php
https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/Repository/Values/Content/ContentInfo.php
https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/Repository/Values/Content/Content.php
https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/Repository/Values/Content/VersionInfo.php
https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/Repository/Values/Content/VersionInfo.php
http://symfony.com/doc/current/book/templating.html#template-inheritance-and-layouts
http://symfony.com/doc/current/book/templating.html#embedding-controllers
https://doc.ez.no/display/EZP51/View+provider+configuration

 (see below how to render embedded content objects). In this case your template should probably not extend your main layout.equests

In this regard, it is recommended to use inheritance this way:

{% extends noLayout ? viewbaseLayout : "AcmeDemoBundle::pagelayout.html.twig" %}

{% block content %}
...
{% endblock %}

Exposing additional variables

It is possible to expose additional variables in a content view template. See .parameters injection in content views

Making links to other locations

Linking to other locations is fairly easy and is done with (or if you want to generate absolute URLs). You justnative Twig helperpath() url()
have to pass it the Location object and will generate the URLAlias for you.path()

{# Assuming "location" variable is a valid
eZ\Publish\API\Repository\Values\Content\Location object #}
Some link to a location

If you don't have the Location object, but only its ID, you can generate the URLAlias the following way:

Some link to a location,
with its Id only

Render embedded content objects

Rendering an embedded content from a Twig template is pretty straight forward as you just need to do a subrequest with controllez_content
.er

Using controllerez_content

This controller is exactly the same as and has 2 main actions:the ViewController presented above

viewLocation to render a location (same as when accessing a content through an URLAlias)
viewContent to render a content

You can use this controller from templates with the following syntax:

{{ render(controller("ez_content:viewLocation", {"locationId": 123, "viewType":
"line"})) }}

Under the hood
In the backend, uses the Router to generate links.path()

This makes also easy to generate links from PHP, via the service.router

eZ Publish 5.1+ / Symfony 2.2+

http://symfony.com/doc/current/book/templating.html#embedding-controllers
https://doc.ez.no/display/EZP51/Parameters+injection+in+content+views
http://symfony.com/doc/2.2/book/templating.html#linking-to-pages

The example above allows you to render a Location which ID is 123, with the view type line.

Available arguments

As any controller, you can pass arguments to or to fit your needs.ez_content:viewLocation ez_content:viewContent

Name Description Type Default value

locationId Id of the location you want to render.
 Only for ez_content:viewLocation

integer N/A

contentId Id of the content you want to render.
 Only for ez_content:viewContent

integer N/A

viewType The view type you want to render your content/location in.
Will be used by the ViewManager to select corresponding template, according to defined rules.

Example: full, line, my_custom_view, ...

string full

layout Indicates if the sub-view needs to use the main layout (see)available variables in a view template

boolean false

params Hash of variables you want to inject to sub-template, key being the exposed variable name.

{{ render(
 controller(
 "ez_content:viewLocation",
 {
 "locationId": 123,
 "viewType": "line",
 "params": { "some_variable": "some_value" }
 }
)
) }}

hash empty hash

ESI

Just as for regular Symfony controllers, you can take advantage of ESI and use different cache levels:

{{ render_esi(controller("ez_content:viewLocation", {"locationId": 123, "viewMode":
"line"})) }}

 Asynchronous rendering

Reference of controller follow the syntax of , .ez_content controllers as a service as explained in Symfony documentation

Available as of eZ Publish 5.1

Using ESI (eZ Publish 5.1+ / Symfony 2.2+)

http://symfony.com/doc/current/cookbook/controller/service.html

Symfony also supports asynchronous content rendering with the help of library.hinclude.js

{{ render_hinclude(controller("ez_content:viewLocation", {"locationId": 123,
"viewMode": "line"})) }}

Asynchronous rendering (eZ Publish 5.1+ / Symfony 2.2+)

hinclude.js needs to be properly included in your layout to work.

Please for all available options.refer to Symfony documentation

http://mnot.github.com/hinclude/
http://mnot.github.com/hinclude/
http://symfony.com/doc/current/book/templating.html#asynchronous-content-with-hinclude-js

	Content view

