
1.
2.

Legacy template fallback

When the standard view provider is not able to select an appropriate template for a given content, the system fallbacks to the legacy kernel

. and delegates the view selection to it This ensures that a content is always displayed and hence eases project migration
from eZ Publish v4.x to v5.x

Pagelayout and main block
Base layout for legacy fallback
Block name
Module layout

Displaying legacy module result
Persistent variable
Assets

Pagelayout and main block

When falling back to the legacy kernel, to return the appropriate view for the given content. However, thethe old module is runcontent/view
pagelayout is not rendered as it needs to be still rendered by Twig in the Symfony part, for consistency. In this regard, the system uses the Decor

 to include the generated view in your layout.ator design pattern

For this to work, you need to configure 2 things :

Which template you want to use as a base template for legacy fallback
The name of the block to use in your layout

Base layout for legacy fallback

You can configure this by setting the config key.ezpublish_legacy.<siteaccess_or_siteaccess_group>.view_default_layout

Example:

parameters:
 # eZ Publish 5.1+ only
 ezpublish_legacy.my_siteaccess.view_default_layout:
AcmeDemoBundle::my_layout.html.twig

Block name

Internally when rendering the view coming from the legacy kernel, a Twig template is created on the fly. This template extends the pagelayout you
configured and includes the content inside a block. The name of this block is configurable as well (default is).content

parameters:
 ezpublish_legacy.<siteaccess_or_siteaccess_group>.view_default_layout:
AcmeDemoBundle::my_layout.html.twig
 ezpublish.content_view.content_block_name: content

The following does not apply to siteaccesses configured with legacy_mode: true

ezpublish/config/ezpublish.yml

ezpublish/config/ezpublish.yml

<!DOCTYPE html>
<html>
<head>
 <!-- ... -->
</head>
<body>
 {% block content %}{# Content will be inserted here #}{% endblock %}
</body>
</html>

Module layout

The module layout can also be defined the same way as the base layout, by setting the ezpublish_legacy.<sco
pe>.module_default_layout config key. This layout is used to handle "non content" related legacy requests.

Displaying legacy module result

This makes your base layout reusable. However, content generated by legacy modules (i.e.) will not be automatically inserted/ezinfo/about
as your layout will be rendered as a regular template, receiving variable coming from the legacy kernel. The solution is to use 2module_result
different templates, one for the global layout, and another for legacy module rendering:

<!DOCTYPE html>
<html>
<head>
 <!-- Insert everything you need here that is common -->
</head>
<body>
 {% block content %}{# Regular content will be inserted here #}{% endblock %}
</body>
</html>

{% extends "AcmeDemoBundle::layout.html.twig" %}

{% block content %}
 {# module_result variable is received from the legacy controller. #}
 {# It holds the legacy module result #}
 {{ module_result.content|raw }}
{% endblock %}

my_layout.html.twig

Version compatibility
The module layout setting is available from eZ Publish 5.1.

AcmeDemoBundle::layout.html.twig

AcmeDemoBundle::layout_legacy.html.twig

parameters:
 ezpublish_legacy.my_siteaccess.module_default_layout:
AcmeDemoBundle::layout_legacy.html.twig
 ezpublish_legacy.my_siteaccess.view_default_layout:
AcmeDemoBundle::layout.html.twig

Persistent variable

The persistent variable is a special variable in legacy templates that you can set in order to pass values from the content template to the
pagelayout. This variable, among others, is accessible from the configured Twig pagelayout thanks to the helper .ezpublish.legacy

Actually, all data is exposed.contained in in the legacy kernel$module_result

<!DOCTYPE html>
<html>
<head>
 <!-- ... -->
 {% if ezpublish.legacy.has('content_info') %}
 {% set persistent_variable = ezpublish.legacy.get('content_info'
)['persistent_variable'] %}
 {% endif %}
</head>
<body>
 {% block content %}{# Content will be inserted here #}{% endblock %}
</body>
</html>

Assets

Like the persistent variable, it is possible to require css and/or javascripts assets from a content template through the legacy ezscript_requir
 and template operators.e() ezcss_require()

You can easily retrieve those requested assets from the legacy template in the Twig pagelayout with the helper.ezpublish.legacy

ezpublish/config/ezpublish.yml

Access to the persistent variable

http://doc.ez.no/eZ-Publish/Technical-manual/4.x/Templates/The-pagelayout/Variables-in-pagelayout#module_result

<!DOCTYPE html>
<html>
<head>
 <!-- ... -->
 {% set requested_css_files = ezpublish.legacy.get('css_files') %}
 {% set requested_js_files = ezpublish.legacy.get('js_files') %}

 {# "configured" assets are the ones defined in design.ini
(FrontendCSSFileList/FrontendJavaScriptList) #}
 {% set configured_js_files = ezpublish.legacy.get('js_files_configured') %}
 {% set configured_css_files = ezpublish.legacy.get('css_files_configured') %}
</head>
<body>
 {% block content %}{# Content will be inserted here #}{% endblock %}
</body>
</html>

Getting assets requested from a legacy template

Assetic incompatibility
Warning: If you use Assetic to combine and/or compress your assets, please note that cu and Twig tagsjavascripts stylesheets
rrently don't support variable file lists, so you won't be able to use them with the example above.

http://symfony.com/doc/current/cookbook/assetic/asset_management.html#assets

	Legacy template fallback

